File size: 966 Bytes
662dde3 243f4a2 662dde3 cd52006 662dde3 bfe5886 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
---
license: mit
language:
- en
---
This model is a fine-tuned version of Llama2-13B using the RAG-LER (Retrieval Augmented Generation with LM-Enhanced Re-ranker) framework, as described in our paper.
## How to Get Started with the Model
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("notoookay/ragler-llama2-13b")
model = AutoModelForCausalLM.from_pretrained("notoookay/ragler-llama2-13b", torch_dtype=torch.bfloat16, device_map="auto")
# Example usage
input_text = "### Instruction:\nAnswer the following question.\n\n### Input:\nQuestion:\nWhat is the capital of France?\n\n### Response:\n"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0]))
```
The corresponding re-ranker supervised by this model can be downloaded [here](https://huggingface.co/notoookay/ragler-llama2-13b-reranker). |