--- library_name: transformers pipeline_tag: text-generation language: - ar --- # 1p46G-gemma-fp-dedup-rehydr-ar-350BT-seed-6/transformers/107000 Tokenizer: `google/gemma-7b` ```python from transformers import AutoTokenizer, AutoModelForCausalLM # Initialize model and tokenizer TEST_PROMPT = "الزرادشتية هي ديانة انتشرت في بلاد" save_path = "nouamanetazi/hf-ar-107000" tokenizer = AutoTokenizer.from_pretrained(save_path) input_ids = tokenizer(TEST_PROMPT, return_tensors="pt")["input_ids"].cuda() # google/gemma-7b print("Input prompt:", tokenizer.batch_decode(input_ids)[0]) model = AutoModelForCausalLM.from_pretrained(save_path, device="cuda", dtype=torch.bfloat16) outputs = model.generate(input_ids, max_new_tokens=100) print("Generated text:", tokenizer.batch_decode(outputs)[0]) ```