Upload NavyBayes.py
Browse files- NavyBayes.py +57 -139
NavyBayes.py
CHANGED
@@ -1,160 +1,78 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
from joblib import dump, load
|
|
|
|
|
|
|
4 |
import datetime
|
5 |
import re
|
6 |
-
|
7 |
-
|
8 |
-
import pandas as pd # type: ignore
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
# تأكد من وضع المسار الصحيح لملف التوثيق Firebase
|
13 |
-
cred = credentials.Certificate("D:/app-sentinel-7qnr19-firebase-adminsdk-kjmbe-f38e16a432.json")
|
14 |
-
firebase_admin.initialize_app(cred)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
# تحميل النموذج الحالي والمحول
|
19 |
try:
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
except Exception as e:
|
24 |
-
|
25 |
-
|
26 |
-
print(f"Model and vectorizer not found. You need to train the model. Error: {e}")
|
27 |
|
28 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def classify_and_store_message(message):
|
|
|
|
|
|
|
30 |
global model, vectorizer
|
31 |
try:
|
32 |
-
if not
|
33 |
-
raise ValueError("
|
34 |
|
35 |
-
#
|
36 |
message_vector = vectorizer.transform([message])
|
37 |
classification = model.predict(message_vector)[0]
|
38 |
|
39 |
-
#
|
40 |
message_data = {
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
}
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
db.collection('all_messages').add(message_data)
|
52 |
-
|
53 |
-
# تخزين الرسالة في مجموعة 'recently_analyzed_messages'
|
54 |
-
db.collection('recently_analyzed_messages').add(message_data)
|
55 |
|
56 |
-
print(f"Message classified as {classification} and stored in Firestore.")
|
57 |
return classification
|
58 |
-
|
59 |
except Exception as e:
|
60 |
-
|
61 |
return None
|
62 |
-
|
63 |
-
# 2. وظيفة لتحليل النصوص المدخلة
|
64 |
-
def analyze_input_text():
|
65 |
-
print("\n--- SMS Classification and Link Analysis Tool ---")
|
66 |
-
while True:
|
67 |
-
user_input = input("Enter a message to classify (or type 'exit' to quit): ").strip()
|
68 |
-
if user_input.lower() == 'exit':
|
69 |
-
print("Exiting the tool. Goodbye!")
|
70 |
-
break
|
71 |
-
|
72 |
-
# استخراج الروابط من النص المدخل
|
73 |
-
links = re.findall(r'(https?://[^\s]+)', user_input)
|
74 |
-
if links:
|
75 |
-
print(f"Detected links: {links}")
|
76 |
-
# تحليل الروابط (يمكن تطوير التحليل ليشمل أدوات أو خدمات خارجية)
|
77 |
-
for link in links:
|
78 |
-
# افتراض تحليل بسيط (يمكن تحسينه لاحقًا)
|
79 |
-
if "secure" in link or "safe" in link:
|
80 |
-
print(f"Link '{link}' appears safe.")
|
81 |
-
else:
|
82 |
-
print(f"Link '{link}' might be suspicious.")
|
83 |
-
else:
|
84 |
-
print("No links detected in the message.")
|
85 |
-
|
86 |
-
# تصنيف الرسالة
|
87 |
-
classification = classify_and_store_message(user_input)
|
88 |
-
if classification:
|
89 |
-
print(f"Message classified as: {classification}")
|
90 |
-
else:
|
91 |
-
print("Unable to classify the message. Please try again.")
|
92 |
-
|
93 |
-
# 3. دالة لتحديث النموذج مع بيانات جديدة
|
94 |
-
def update_model_with_new_data(new_messages, new_labels):
|
95 |
-
global model, vectorizer
|
96 |
-
try:
|
97 |
-
# تحميل البيانات الحالية
|
98 |
-
data = {
|
99 |
-
'message': new_messages,
|
100 |
-
'label': new_labels
|
101 |
-
}
|
102 |
-
df_new = pd.DataFrame(data)
|
103 |
-
|
104 |
-
# تحديث المحول والنموذج
|
105 |
-
if vectorizer is None or model is None:
|
106 |
-
vectorizer = TfidfVectorizer()
|
107 |
-
X_new = vectorizer.fit_transform(df_new['message'])
|
108 |
-
else:
|
109 |
-
X_new = vectorizer.transform(df_new['message'])
|
110 |
-
|
111 |
-
# جمع البيانات الجديدة مع القديمة وإعادة التدريب
|
112 |
-
y_new = df_new['label']
|
113 |
-
if model is None:
|
114 |
-
model = MultinomialNB()
|
115 |
-
model.partial_fit(X_new, y_new, classes=['spam_phishing', 'social_phishing', 'news_phishing', 'advertisement_phishing'])
|
116 |
-
|
117 |
-
# حفظ النموذج الجديد
|
118 |
-
dump(model, 'model.joblib')
|
119 |
-
dump(vectorizer, 'vectorizer.joblib')
|
120 |
-
print("Model updated and saved successfully.")
|
121 |
-
|
122 |
-
except Exception as e:
|
123 |
-
print(f"Error updating model: {e}")
|
124 |
-
|
125 |
-
# 4. دالة لاختبار النظام
|
126 |
-
def test_system():
|
127 |
-
test_messages = [
|
128 |
-
"Win a free vacation now! Visit https://spam-link.com",
|
129 |
-
"Breaking news: Major stock updates today.",
|
130 |
-
"Don't forget our meeting tomorrow at 10 AM.",
|
131 |
-
"Click here to secure your bank account: https://phishing-link.com",
|
132 |
-
"Exclusive offers just for you! Buy now at https://ad-link.com"
|
133 |
-
]
|
134 |
-
|
135 |
-
for msg in test_messages:
|
136 |
-
print(f"\nAnalyzing message: {msg}")
|
137 |
-
analyze_input_text(msg)
|
138 |
-
|
139 |
-
# 5. وظيفة للتصحيح اليدوي
|
140 |
-
def correct_classification(message_id, correct_label):
|
141 |
-
try:
|
142 |
-
# جلب الرسالة من Firestore
|
143 |
-
message_ref = db.collection('all_messages').document(message_id)
|
144 |
-
message_data = message_ref.get().to_dict()
|
145 |
-
|
146 |
-
if not message_data:
|
147 |
-
print("Message not found.")
|
148 |
-
return
|
149 |
-
|
150 |
-
# تحديث التصنيف في Firestore
|
151 |
-
message_ref.update({'classification': correct_label})
|
152 |
-
|
153 |
-
# إضافة البيانات إلى نموذج التدريب الجديد
|
154 |
-
update_model_with_new_data([message_data['text']], [correct_label])
|
155 |
-
print(f"Message classification corrected to {correct_label} and model updated.")
|
156 |
-
except Exception as e:
|
157 |
-
print(f"Error correcting classification: {e}")
|
158 |
-
|
159 |
-
# تشغيل تحليل النصوص
|
160 |
-
analyze_input_text()
|
|
|
1 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
2 |
+
from sklearn.naive_bayes import MultinomialNB
|
3 |
+
from joblib import dump, load
|
4 |
+
import firebase_admin
|
5 |
+
from firebase_admin import credentials, firestore
|
6 |
+
import logging
|
7 |
import datetime
|
8 |
import re
|
9 |
+
import pandas as pd
|
10 |
+
import os
|
|
|
11 |
|
12 |
+
# إعداد السجلات
|
13 |
+
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
|
|
|
|
14 |
|
15 |
+
# Firebase Initialization
|
|
|
|
|
16 |
try:
|
17 |
+
# استخدم المسار الذي قدمته
|
18 |
+
cred_path = r"D:\app-sentinel-7qnr19-firebase-adminsdk-kjmbe-533749ec1a.json"
|
19 |
+
if not firebase_admin._apps:
|
20 |
+
cred = credentials.Certificate(cred_path)
|
21 |
+
firebase_admin.initialize_app(cred)
|
22 |
+
db = firestore.client()
|
23 |
+
logging.info("Firebase initialized successfully.")
|
24 |
except Exception as e:
|
25 |
+
logging.error(f"Error initializing Firebase: {e}")
|
26 |
+
db = None
|
|
|
27 |
|
28 |
+
# Load or Train Model
|
29 |
+
try:
|
30 |
+
model_path = os.path.join(os.getcwd(), "model.joblib")
|
31 |
+
vectorizer_path = os.path.join(os.getcwd(), "vectorizer.joblib")
|
32 |
+
model = load(model_path)
|
33 |
+
vectorizer = load(vectorizer_path)
|
34 |
+
logging.info("Model and vectorizer loaded successfully.")
|
35 |
+
except Exception as e:
|
36 |
+
logging.warning(f"Model and vectorizer not found. Training new ones. Error: {e}")
|
37 |
+
# Train new model and vectorizer
|
38 |
+
messages = ["example message 1", "example message 2"]
|
39 |
+
labels = ["label1", "label2"]
|
40 |
+
vectorizer = TfidfVectorizer()
|
41 |
+
X = vectorizer.fit_transform(messages)
|
42 |
+
model = MultinomialNB()
|
43 |
+
model.fit(X, labels)
|
44 |
+
dump(model, model_path)
|
45 |
+
dump(vectorizer, vectorizer_path)
|
46 |
+
logging.info("New model and vectorizer trained and saved.")
|
47 |
+
|
48 |
+
# Classify Message
|
49 |
def classify_and_store_message(message):
|
50 |
+
"""
|
51 |
+
Classify a message and store the result in Firestore.
|
52 |
+
"""
|
53 |
global model, vectorizer
|
54 |
try:
|
55 |
+
if not message.strip():
|
56 |
+
raise ValueError("Input message cannot be empty.")
|
57 |
|
58 |
+
# Transform the message using the vectorizer
|
59 |
message_vector = vectorizer.transform([message])
|
60 |
classification = model.predict(message_vector)[0]
|
61 |
|
62 |
+
# Prepare data for Firestore
|
63 |
message_data = {
|
64 |
+
"text": message,
|
65 |
+
"classification": classification,
|
66 |
+
"timestamp": datetime.datetime.now(),
|
67 |
}
|
68 |
|
69 |
+
if db:
|
70 |
+
db.collection("all_messages").add(message_data)
|
71 |
+
logging.info(f"Message classified as {classification} and stored.")
|
72 |
+
else:
|
73 |
+
logging.warning("Firestore is not initialized. Data not stored.")
|
|
|
|
|
|
|
|
|
74 |
|
|
|
75 |
return classification
|
|
|
76 |
except Exception as e:
|
77 |
+
logging.error(f"Error in classification: {e}")
|
78 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|