Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# phi-1_5-qlora-alpaca-instruction Model Card
|
2 |
+
|
3 |
+
## Model Description
|
4 |
+
|
5 |
+
This model is a causal language model based on the `microsoft/phi-1_5` and has been finetuned using QLORA technology on the `vicgalle/alpaca-gpt4` dataset.
|
6 |
+
|
7 |
+
## Fine-tuning Details
|
8 |
+
- **Base Model**: `microsoft/phi-1_5`
|
9 |
+
- **Fine-tuning Dataset**: `vicgalle/alpaca-gpt4`
|
10 |
+
- **Hardware**: NVIDIA 3090ti
|
11 |
+
- **Training Duration**: 8 hours
|
12 |
+
- **VRAM Consumption**: Approx. 20 GB for 14 hours
|
13 |
+
- **Token Max Length**: 2048
|
14 |
+
- **Model Size**: 1.5billion + qlora weights merged
|
15 |
+
|
16 |
+
### Hyperparameters
|
17 |
+
|
18 |
+
```python
|
19 |
+
# Lora Configuration
|
20 |
+
config = LoraConfig(
|
21 |
+
r=16,
|
22 |
+
lora_alpha=16,
|
23 |
+
target_modules=["Wqkv", "out_proj"],
|
24 |
+
lora_dropout=0.05,
|
25 |
+
bias="none",
|
26 |
+
task_type="CAUSAL_LM"
|
27 |
+
)
|
28 |
+
|
29 |
+
# Training Hyperparameters
|
30 |
+
training_arguments = TrainingArguments(
|
31 |
+
output_dir=f"{local_path}/output_dir",
|
32 |
+
per_device_train_batch_size=4,
|
33 |
+
gradient_accumulation_steps=6,
|
34 |
+
learning_rate=2e-4,
|
35 |
+
lr_scheduler_type="cosine",
|
36 |
+
evaluation_strategy = "steps",
|
37 |
+
eval_steps=500,
|
38 |
+
save_strategy="epoch",
|
39 |
+
logging_steps=100,
|
40 |
+
num_train_epochs=6,
|
41 |
+
report_to = 'wandb',
|
42 |
+
run_name = run_name
|
43 |
+
)
|
44 |
+
|
45 |
+
```
|
46 |
+
|
47 |
+
## Usage
|
48 |
+
|
49 |
+
```python
|
50 |
+
import torch
|
51 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
52 |
+
|
53 |
+
model_name = "nps798/phi-1_5-qlora-alpaca-instruction"
|
54 |
+
|
55 |
+
model = AutoModelForCausalLM.from_pretrained(
|
56 |
+
model_name,
|
57 |
+
device_map={"": 0},
|
58 |
+
trust_remote_code=True
|
59 |
+
)
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
61 |
+
model_name,
|
62 |
+
trust_remote_code=True
|
63 |
+
)
|
64 |
+
|
65 |
+
prompt= """Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
66 |
+
|
67 |
+
### Instruction:
|
68 |
+
Choose three places you would like to visit and explain why.
|
69 |
+
|
70 |
+
### Response:"""
|
71 |
+
inputs = tokenizer(prompt, return_tensors="pt", return_attention_mask=False)
|
72 |
+
outputs = model.generate(**inputs, max_length=500)
|
73 |
+
text = tokenizer.batch_decode(outputs)[0]
|
74 |
+
print(text)
|
75 |
+
|
76 |
+
```
|
77 |
+
|
78 |
+
## License
|
79 |
+
Because the base model is microsoft phi-1.5b model, this fine-tuned model is provided under the MICROSOFT RESEARCH LICENSE and is meant for non-commercial use only.
|
80 |
+
|
81 |
+
## Author
|
82 |
+
I am a medical doctor interested in ML/NLP field.
|
83 |
+
If you have any advice, suggestions, or opportunities, or simply want to discuss the fascinating intersection of medicine and technology, please don't hesitate to reach out.
|
84 |
+
|