File size: 1,719 Bytes
7e6822b 966bded 7e6822b bd0a89d 7e6822b bd0a89d 7e6822b bd0a89d 7e6822b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: other
library_name: peft
tags:
- generated_from_trainer
base_model: microsoft/phi-2
model-index:
- name: phi-2-FCRL-v0.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phi-2-FCRL-v0.1
This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on [vicgalle/alpaca-gpt4](https://huggingface.co/vicgalle/alpaca-gpt4), [nRuaif/OpenOrca-GPT3.5](https://huggingface.co/nRuaif/OpenOrca-GPT3.5), [sahil2801/CodeAlpaca-20k](https://huggingface.co/sahil2801/CodeAlpaca-20k)
### Quick start
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("npvinHnivqn/phi-2-FCRL-v0.1", trust_remote_code=True, torch_dtype=torch.float32)
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2-FCRL-v0.1", trust_remote_code=True)
inputs = tokenizer('''<SYSTEM>: You are a very good and helpful chatbot, you can answer almost every questions. <|USER|>: Write a short story about a curious cat <|BOT|>:''', return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=512)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.0
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0 |