Model save
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/wav2vec2-xls-r-300m
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD-experiment2
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-large-xls-r-300m-Arabic-phoneme-based-MDD-experiment2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0380
|
21 |
+
- Per: 0.0182
|
22 |
+
- Wer: 0.0209
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0005
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 6
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 32
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_steps: 250
|
50 |
+
- num_epochs: 30.0
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Per | Wer |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
56 |
+
| 2.3253 | 1.0 | 546 | 1.6463 | 0.9997 | 0.9990 |
|
57 |
+
| 1.7194 | 2.0 | 1093 | 1.4798 | 0.9993 | 0.9985 |
|
58 |
+
| 1.6318 | 3.0 | 1640 | 1.2181 | 0.9304 | 0.9399 |
|
59 |
+
| 1.4017 | 4.0 | 2187 | 0.5801 | 0.2704 | 0.3889 |
|
60 |
+
| 0.9203 | 5.0 | 2733 | 0.1995 | 0.1330 | 0.1439 |
|
61 |
+
| 0.669 | 6.0 | 3280 | 0.1462 | 0.0867 | 0.0928 |
|
62 |
+
| 0.5585 | 7.0 | 3827 | 0.0925 | 0.0739 | 0.0752 |
|
63 |
+
| 0.4954 | 8.0 | 4374 | 0.0795 | 0.0601 | 0.0573 |
|
64 |
+
| 0.4536 | 9.0 | 4920 | 0.0714 | 0.0498 | 0.0530 |
|
65 |
+
| 0.4183 | 10.0 | 5467 | 0.0726 | 0.0652 | 0.0679 |
|
66 |
+
| 0.3896 | 11.0 | 6014 | 0.0782 | 0.0566 | 0.0553 |
|
67 |
+
| 0.3643 | 12.0 | 6561 | 0.0713 | 0.0502 | 0.0514 |
|
68 |
+
| 0.3391 | 13.0 | 7107 | 0.0928 | 0.0693 | 0.0702 |
|
69 |
+
| 0.3229 | 14.0 | 7654 | 0.0596 | 0.0503 | 0.0484 |
|
70 |
+
| 0.3038 | 15.0 | 8201 | 0.0651 | 0.0531 | 0.0547 |
|
71 |
+
| 0.2853 | 16.0 | 8748 | 0.0577 | 0.0483 | 0.0473 |
|
72 |
+
| 0.2736 | 17.0 | 9294 | 0.0542 | 0.0463 | 0.0485 |
|
73 |
+
| 0.2603 | 18.0 | 9841 | 0.0519 | 0.0327 | 0.0325 |
|
74 |
+
| 0.2472 | 19.0 | 10388 | 0.0513 | 0.0336 | 0.0351 |
|
75 |
+
| 0.2346 | 20.0 | 10935 | 0.0589 | 0.0281 | 0.0310 |
|
76 |
+
| 0.2265 | 21.0 | 11481 | 0.0499 | 0.0285 | 0.0312 |
|
77 |
+
| 0.214 | 22.0 | 12028 | 0.0485 | 0.0281 | 0.0342 |
|
78 |
+
| 0.2045 | 23.0 | 12575 | 0.0479 | 0.0273 | 0.0295 |
|
79 |
+
| 0.1917 | 24.0 | 13122 | 0.0457 | 0.0267 | 0.0286 |
|
80 |
+
| 0.1814 | 25.0 | 13668 | 0.0423 | 0.0224 | 0.0265 |
|
81 |
+
| 0.1769 | 26.0 | 14215 | 0.0442 | 0.0243 | 0.0264 |
|
82 |
+
| 0.1682 | 27.0 | 14762 | 0.0396 | 0.0200 | 0.0235 |
|
83 |
+
| 0.161 | 28.0 | 15309 | 0.0386 | 0.0190 | 0.0225 |
|
84 |
+
| 0.1572 | 29.0 | 15855 | 0.0383 | 0.0186 | 0.0216 |
|
85 |
+
| 0.1502 | 29.96 | 16380 | 0.0380 | 0.0182 | 0.0209 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.33.1
|
91 |
+
- Pytorch 2.0.1+cu118
|
92 |
+
- Datasets 1.18.3
|
93 |
+
- Tokenizers 0.13.3
|