--- language: - en license: mit base_model: distil-whisper/distil-small.en tags: - generated_from_trainer datasets: - atc metrics: - wer model-index: - name: Whisper Large v3 1500 Epochs 2 - nullonesix results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: atc type: atc args: 'config: en, split: test' metrics: - name: Wer type: wer value: 39.23487544483986 --- # Whisper Large v3 1500 Epochs 2 - nullonesix This model is a fine-tuned version of [distil-whisper/distil-small.en](https://huggingface.co/distil-whisper/distil-small.en) on the atc dataset. It achieves the following results on the evaluation set: - Loss: 1.4151 - Wer: 39.2349 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 2.8313 | 3.5714 | 100 | 2.7177 | 74.1548 | | 1.1366 | 7.1429 | 200 | 1.6407 | 63.0338 | | 0.4394 | 10.7143 | 300 | 1.4737 | 47.4644 | | 0.1686 | 14.2857 | 400 | 1.4481 | 46.3968 | | 0.0761 | 17.8571 | 500 | 1.3707 | 40.8808 | | 0.0452 | 21.4286 | 600 | 1.4051 | 38.5231 | | 0.0188 | 25.0 | 700 | 1.4044 | 36.7883 | | 0.0167 | 28.5714 | 800 | 1.4217 | 38.8345 | | 0.0084 | 32.1429 | 900 | 1.4120 | 48.5765 | | 0.0033 | 35.7143 | 1000 | 1.4151 | 39.2349 | | 0.0022 | 39.2857 | 1100 | 1.4401 | 39.7242 | | 0.0008 | 42.8571 | 1200 | 1.4591 | 39.5907 | | 0.0007 | 46.4286 | 1300 | 1.4679 | 39.5907 | | 0.0006 | 50.0 | 1400 | 1.4724 | 39.8577 | | 0.0007 | 53.5714 | 1500 | 1.4737 | 39.7242 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1