File size: 3,572 Bytes
3a83cdf
4e3e05e
 
 
3a83cdf
4e3e05e
3a83cdf
6c31f0f
4e3e05e
3a83cdf
4e3e05e
3a83cdf
4e3e05e
3a83cdf
6c31f0f
 
4e3e05e
 
 
 
3a83cdf
 
4e3e05e
3a83cdf
4e3e05e
3a83cdf
4e3e05e
 
 
3a83cdf
f92cfea
3a83cdf
4e3e05e
 
 
3a83cdf
 
4e3e05e
3a83cdf
4e3e05e
3a83cdf
4e3e05e
c19ecd4
4e3e05e
3a83cdf
 
4e3e05e
 
 
 
 
 
 
 
 
3a83cdf
4e3e05e
 
3a83cdf
 
4e3e05e
 
3a83cdf
4e3e05e
3a83cdf
4e3e05e
3a83cdf
4e3e05e
 
 
 
 
 
 
 
 
 
 
3a83cdf
4e3e05e
 
 
 
 
 
 
 
 
 
 
 
3a83cdf
4e3e05e
3a83cdf
 
4e3e05e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: mit
language:
- en
---
# Structure Extraction Model by NuMind 🔥

NuExtract-large is a fine-tuned version of [phi-3-small](), on a private high-quality syntatic dataset for information extraction. 
To use the model, provide an input text (less than 2000 tokens) and a JSON schema describing the information you need to extract. 

Note: This model is purely extractive, so each information output by the model is present as it is in the text. You can also provide an example of output to help the model understand your task more precisely.

try the base model here: https://huggingface.co/spaces/numind/NuExtract

We also provide a tiny (0.5B) and base (7B) version of this model: [NuExtract](https://huggingface.co/numind/NuExtract-tiny) and [NuExtract](https://huggingface.co/numind/NuExtract)

**Checkout other models by NuMind:**
* SOTA Zero-shot NER Model [NuNER Zero](https://huggingface.co/numind/NuNER_Zero)
* SOTA Multilingual Entity Recognition Foundation Model: [link](https://huggingface.co/numind/entity-recognition-multilingual-general-sota-v1)
* SOTA Sentiment Analysis Foundation Model: [English](https://huggingface.co/numind/generic-sentiment-v1), [Multilingual](https://huggingface.co/numind/generic-sentiment-multi-v1)


## Benchmark

Benchmark 0 shot (will release soon):

<p align="left">
<img src="result.png" width="600">
</p>

Benchmark fine-tunning (see blog post):

<p align="left">
<img src="result_ft.png" width="600">
</p>


## Usage

To use the model:

```python
import json
from transformers import AutoModelForCausalLM, AutoTokenizer


def predict_NuExtract(model,tokenizer,text, schema,example = ["","",""]):
    schema = json.dumps(json.loads(schema), indent=4)
    input_llm =  "<|input|>\n### Template:\n" +  schema + "\n"
    for i in example:
      if i != "":
          input_llm += "### Example:\n"+ json.dumps(json.loads(i), indent=4)+"\n"
    
    input_llm +=  "### Text:\n"+text +"\n<|output|>\n"
    input_ids = tokenizer(input_llm, return_tensors="pt",truncation = True, max_length = 4000).to("cuda")

    output = tokenizer.decode(model.generate(**input_ids)[0], skip_special_tokens=True)
    return output.split("<|output|>")[1].split("<|end-output|>")[0]


model = AutoModelForCausalLM.from_pretrained("numind/NuExtract", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("numind/NuExtract", trust_remote_code=True)

#model.to("cuda")

model.eval()

text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for
superior performance and efficiency. Mistral 7B outperforms the best open 13B
model (Llama 2) across all evaluated benchmarks, and the best released 34B
model (Llama 1) in reasoning, mathematics, and code generation. Our model
leverages grouped-query attention (GQA) for faster inference, coupled with sliding
window attention (SWA) to effectively handle sequences of arbitrary length with a
reduced inference cost. We also provide a model fine-tuned to follow instructions,
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and
automated benchmarks. Our models are released under the Apache 2.0 license.
Code: https://github.com/mistralai/mistral-src
Webpage: https://mistral.ai/news/announcing-mistral-7b/"""

schema = """{
    "Model": {
        "Name": "",
        "Number of parameters": "",
        "Number of token": "",
        "Architecture": []
    },
    "Usage": {
        "Use case": [],
        "Licence": ""
    }
}"""

prediction = predict_NuExtract(model,tokenizer,text, schema,example = ["","",""])


```