--- license: mit datasets: - numind/NuNER library_name: gliner language: - en pipeline_tag: token-classification tags: - entity recognition - NER - named entity recognition - zero shot - zero-shot --- NuZero - is the family of Zero-Shot Entity Recognition models inspired by [GLiNER](https://huggingface.co/papers/2311.08526) and built with insights we gathered throughout our work on [NuNER](https://arxiv.org/abs/2402.15343). NuZero span is a more powerful version of GLiNER-large-v2.1, surpassing it by 4% on average, and is trained on the diverse internal dataset tailored for real-life use cases.

## Installation & Usage ``` !pip install gliner ``` **NuZero requires labels to be lower-cased** ```python from gliner import GLiNER model = GLiNER.from_pretrained("numind/NuZero_span") # NuZero requires labels to be lower-cased! labels = ["person", "award", "date", "competitions", "teams"] text = """ """ entities = model.predict_entities(text, labels) for entity in entities: print(entity["text"], "=>", entity["label"]) ``` ## Fine-tuning ## Citation ``` @misc{bogdanov2024nuner, title={NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data}, author={Sergei Bogdanov and Alexandre Constantin and Timothée Bernard and Benoit Crabbé and Etienne Bernard}, year={2024}, eprint={2402.15343}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```