File size: 2,117 Bytes
97b9212
 
637d6b7
 
 
 
 
 
 
 
 
 
 
 
97b9212
637d6b7
 
 
79101bb
 
 
637d6b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79101bb
637d6b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
datasets:
- numind/NuNER
library_name: gliner
language:
- en
pipeline_tag: token-classification
tags:
- entity recognition
- NER
- named entity recognition
- zero shot
- zero-shot
---

NuZero - is the family of Zero-Shot Entity Recognition models inspired by [GLiNER](https://huggingface.co/papers/2311.08526) and built with insights we gathered throughout our work on [NuNER](https://huggingface.co/collections/numind/nuner-token-classification-and-ner-backbones-65e1f6e14639e2a465af823b).

The key differences between NuZero Token Long in comparison to GLiNER are:
* The possibility to **detect entities that are longer than 12 tokens**, as NuZero Token operates on the token level rather than on the span level.
* NuZero family is trained on the **diverse dataset tailored for real-life use cases**

<p align="center">
<img src="zero_shot_performance_unzero_token.png">
</p>

## Installation & Usage

```
!pip install gliner
```

**NuZero requires labels to be lower-cased**

```python
from gliner import GLiNER

model = GLiNER.from_pretrained("numind/NuZero_token")

# NuZero requires labels to be lower-cased!
labels = ["person", "award", "date", "competitions", "teams"]
labels [l.lower() for l in labels]

text = """

"""

entities = model.predict_entities(text, labels)

for entity in entities:
    print(entity["text"], "=>", entity["label"])
```

## Fine-tuning




## Citation
### This work
```bibtex
@misc{bogdanov2024nuner,
      title={NuNER: Entity Recognition Encoder Pre-training via LLM-Annotated Data}, 
      author={Sergei Bogdanov and Alexandre Constantin and Timothée Bernard and Benoit Crabbé and Etienne Bernard},
      year={2024},
      eprint={2402.15343},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
### Previous work
```bibtex
@misc{zaratiana2023gliner,
      title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer}, 
      author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
      year={2023},
      eprint={2311.08526},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```