Update README.md
Browse files
README.md
CHANGED
@@ -10,9 +10,11 @@ tags:
|
|
10 |
|
11 |
# WikiMedical_sent_biobert
|
12 |
|
13 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a
|
14 |
|
15 |
-
|
|
|
|
|
16 |
|
17 |
## Usage (Sentence-Transformers)
|
18 |
|
@@ -75,7 +77,10 @@ print(sentence_embeddings)
|
|
75 |
|
76 |
## Evaluation Results
|
77 |
|
78 |
-
|
|
|
|
|
|
|
79 |
|
80 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=WikiMedical_sent_biobert)
|
81 |
|
|
|
10 |
|
11 |
# WikiMedical_sent_biobert
|
12 |
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
15 |
+
WikiMedical_sent_bert is based on the [https://huggingface.co/dmis-lab/biobert-base-cased-v1.2](dmis-lab/biobert-base-cased-v1.2) backbone and has been trained on the [WikiMedical_sentence_simialrity](https://huggingface.co/datasets/nuvocare/WikiMedical_sentence_similarity) dataset.
|
16 |
+
|
17 |
+
The model is able to predict whether two texts are related to the same wikipedia page, with only medical topic.
|
18 |
|
19 |
## Usage (Sentence-Transformers)
|
20 |
|
|
|
77 |
|
78 |
## Evaluation Results
|
79 |
|
80 |
+
The model is evaluated on the test set of [WikiMedical_sentence_simialrity](https://huggingface.co/datasets/nuvocare/WikiMedical_sentence_similarity).
|
81 |
+
It achieves a :
|
82 |
+
- cosine spearman score of 0.87
|
83 |
+
- cosine pearson score of 0.95
|
84 |
|
85 |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=WikiMedical_sent_biobert)
|
86 |
|