samchain commited on
Commit
af4baab
·
1 Parent(s): 0f20bfd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -2
README.md CHANGED
@@ -12,7 +12,11 @@ tags:
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
- <!--- Describe your model here -->
 
 
 
 
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -75,7 +79,19 @@ print(sentence_embeddings)
75
 
76
  ## Evaluation Results
77
 
78
- <!--- Describe how your model was evaluated -->
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=WikiMedical_sent_biobert_multi)
81
 
 
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
+ WikiMedical_sent_biobert_multi is a multilingual variation of [nuvocare/WikiMedical_sent_biobert](https://huggingface.co/nuvocare/WikiMedical_sent_biobert) sentence-transformers.
16
+ It has been trained on the [nuvocare/Ted2020_en_es_fr_de_it_ca_pl_ru_nl](https://huggingface.co/datasets/nuvocare/Ted2020_en_es_fr_de_it_ca_pl_ru_nl) dataset.
17
+
18
+ It uses the [nuvocare/WikiMedical_sent_biobert](https://huggingface.co/nuvocare/WikiMedical_sent_biobert) as a teacher model and a 'xlm-roberta-base' as a student model.
19
+ The student model is trained according to the [sentence transformers documentation](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/multilingual/make_multilingual.py) to replicate embeddings across different languages.
20
 
21
  ## Usage (Sentence-Transformers)
22
 
 
79
 
80
  ## Evaluation Results
81
 
82
+ The model is evaluated across languages based on 2 evaluators : [MSE](https://github.com/UKPLab/sentence-transformers/blob/master/sentence_transformers/evaluation/MSEEvaluator.py) and [translation](https://github.com/UKPLab/sentence-transformers/blob/master/sentence_transformers/evaluation/TranslationEvaluator.py).
83
+
84
+ The following table summarized the results:
85
+
86
+ | Language | MSE (x100) | Translation (source to target)| Translation (target to source)|
87
+ |---------|---------|---------|---------|
88
+ | de | 10.39 | 0.70 | 0.69 |
89
+ | es | 9.9 | 0.75 | 0.74 |
90
+ | fr | 10.00 | 0.72 | 0.73 |
91
+ | it | 10.29 | 0.69 | 0.69 |
92
+ | nl | 10.34 | 0.70 | 0.70 |
93
+ | pl | 11.39 | 0.58 | 0.58 |
94
+ | ru | 11.18 | 0.59 | 0.59 |
95
 
96
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=WikiMedical_sent_biobert_multi)
97