Image Feature Extraction
Transformers
Safetensors
feature-extraction
custom_code
File size: 6,017 Bytes
39b9986
 
 
 
 
 
 
 
f6c0c44
39b9986
 
 
 
 
 
 
f6c0c44
 
39b9986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6c0c44
 
39b9986
 
 
 
 
 
 
 
 
f6c0c44
 
 
39b9986
f6c0c44
 
39b9986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6c0c44
39b9986
 
 
 
 
 
 
f6c0c44
 
 
 
 
 
39b9986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6c0c44
39b9986
 
f6c0c44
 
39b9986
f6c0c44
 
39b9986
 
 
 
 
 
f6c0c44
 
39b9986
 
 
 
 
 
 
 
 
 
 
f6c0c44
 
39b9986
 
 
 
f6c0c44
39b9986
 
f6c0c44
 
 
39b9986
f6c0c44
 
39b9986
 
 
f6c0c44
 
 
39b9986
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import math
from typing import Dict, Optional

import torch
from torch import nn

from einops import rearrange
from timm.models.vision_transformer import Block

from .enable_spectral_reparam import disable_spectral_reparam, enable_spectral_reparam


class MLP(nn.Module):
    def __init__(self, input_size: int, hidden_size: int, output_size: int,
                 num_inner: int = 0, device: torch.device = None, **kwargs):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size, device=device)
        self.norm = nn.LayerNorm(hidden_size, device=device)
        self.relu = nn.ReLU()

        inner = []
        for _ in range(num_inner):
            inner.extend([
                nn.Linear(hidden_size, hidden_size, device=device),
                nn.LayerNorm(hidden_size, device=device),
                nn.ReLU(),
            ])
        if inner:
            self.inner = nn.Sequential(*inner)
        else:
            self.inner = nn.Identity()

        self.fc2 = nn.Linear(hidden_size, output_size, device=device)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.fc1(x)
        x = self.norm(x)
        x = self.relu(x)
        x = self.inner(x)
        x = self.fc2(x)
        return x


class MLP2(nn.Module):
    def __init__(self, input_size: int, hidden_size: int, output_size: int,
                 num_inner: int = 0,
                 pre_norm: bool = False, device: torch.device = None,
                 upsample_factor: int = 1,
                 upsample_rank: int = None,
                 from_config: bool = False,
                 **kwargs):
        super().__init__()

        self.pre_norm = nn.Sequential(
            nn.LayerNorm(input_size),
            nn.GELU(),
        ) if pre_norm else nn.Identity()

        self.upsample_factor = upsample_factor
        sq_ups = upsample_factor ** 2

        self._real_output_dim = output_size // sq_ups

        # hidden_size *= upsample_factor
        # output_size *= (upsample_factor ** 2)

        self.fc1 = nn.Linear(input_size, hidden_size, device=device)

        blocks = []
        for _ in range(num_inner):
            blocks.append(nn.Sequential(
                nn.LayerNorm(hidden_size, device=device),
                nn.GELU(),
                nn.Linear(hidden_size, hidden_size, device=device),
            ))
        self.blocks = nn.ModuleList(blocks)

        self.final = nn.Sequential(
            nn.LayerNorm(hidden_size, device=device),
            nn.GELU(),
            nn.Linear(hidden_size, output_size, device=device),
        )

    def forward(self, x: torch.Tensor, images: Optional[torch.Tensor] = None, patch_size: Optional[int] = None) -> torch.Tensor:
        x = self.pre_norm(x)
        x = self.fc1(x)
        for block in self.blocks:
            x = x + block(x)
        x = self.final(x)

        if self.upsample_factor > 1:
            if images is None:
                raise ValueError(f'`images` cannot be `None` when the head\'s `upsample_factor > 1`!')
            if patch_size is None:
                raise ValueError(f'`patch_size` cannot be `None` when the head\'s `upsample_factor > 1`!')
            h, w = tuple(d // patch_size for d in images.shape[-2:])
            x = rearrange(x, 'b (h w) (u1 u2 c) -> b (h u1 w u2) c',
                          h=h, w=w, u1=self.upsample_factor, u2=self.upsample_factor,
                          c=self._real_output_dim)

        return x


MLP_FACTORY = {
    'v1': MLP,
    'v2': MLP2,
}


def strip_prefix(state: Dict[str, torch.Tensor], prefix: str):
    state = {
        k[len(prefix):]: v
        for k, v in state.items()
        if k.startswith(prefix)
    }
    return state


def get_mlp_info_from_state(version: str, state: Dict[str, torch.Tensor], prefix: str = '', spectral_weights: bool = False):
    state = strip_prefix(state, prefix)

    weight_suffix = 'weight' if not spectral_weights else 'parametrizations.weight.original'

    if version == 'v1':
        hidden_dim, input_dim = state[f'fc1.{weight_suffix}'].shape
        output_dim = state[f'fc2.{weight_suffix}'].shape[0]

        for num_inner in range(1000):
            k = f'inner.{num_inner}.0.weight'
            if k not in state:
                break
    elif version == 'v2':
        hidden_dim, input_dim = state[f'fc1.{weight_suffix}'].shape
        output_dim = state[f'final.2.{weight_suffix}'].shape[0]

        for num_inner in range(1000):
            k = f'blocks.{num_inner}.0.weight'
            if k not in state:
                break
    else:
        raise ValueError(f'Unsupported MLP version: {version}')

    return input_dim, hidden_dim, output_dim, num_inner


def create_mlp_from_config(version: str, input_dim: int, hidden_dim: int, output_dim: int, num_inner: int, **kwargs):
    ret: nn.Module = MLP_FACTORY[version](input_dim, hidden_dim, output_dim, num_inner, from_config=True, **kwargs)

    return ret


def create_mlp_from_state(version: str, state: Dict[str, torch.Tensor], prefix: str = '', spectral_weights: bool = False, **kwargs):
    state = strip_prefix(state, prefix)

    input_dim, hidden_dim, output_dim, num_inner = get_mlp_info_from_state(version, state, spectral_weights=spectral_weights)

    ret: nn.Module = create_mlp_from_config(version, input_dim, hidden_dim, output_dim, num_inner, **kwargs)

    if spectral_weights:
        enable_spectral_reparam(ret, init_norm_to_current=False, state_dict_guidance=state)

    ret.load_state_dict(state)

    if spectral_weights:
        disable_spectral_reparam(ret)

    return ret