Image Feature Extraction
Transformers
Safetensors
feature-extraction
custom_code
File size: 7,179 Bytes
f6c0c44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from logging import getLogger
from typing import Tuple

import torch
from torch import nn
from torch.nn import functional as F

from timm.models import register_model
from timm.models import vision_transformer as tvit
from timm.models import convnext as tconv

from einops import rearrange

from . import extra_timm_models as et


class Fuser(nn.Module):
    def __init__(self, src_dim: int, tgt_dim: int, gated: bool = True):
        super().__init__()
        self.gated = gated

        mid_dim = max(src_dim, tgt_dim) * 2

        self.fwd = nn.Sequential(
            nn.Conv2d(src_dim, mid_dim, kernel_size=3, stride=1, padding=1),
            nn.GELU(),
            nn.Conv2d(mid_dim, tgt_dim * (2 if gated else 1), kernel_size=3, stride=1, padding=1),
        )

    def forward(self, src: torch.Tensor, tgt: torch.Tensor) -> torch.Tensor:
        if src.ndim == 3:
            shape = tgt.shape[-2:]
        else:
            shape = src.shape[-2:]

        nd = shape[0] * shape[1]

        if src.ndim == 3:
            src = src[:, -nd:].reshape(src.shape[0], src.shape[2], *shape)

        if tgt.ndim == 3:
            tgt_pre = tgt[:, :-nd]
            tgt = tgt[:, -nd:].reshape(tgt.shape[0], tgt.shape[2], *shape)
        else:
            tgt_pre = None

        pred = self.fwd(src)

        if self.gated:
            g, pred = torch.chunk(pred, 2, dim=1)

            g = F.sigmoid(g)

            pred = g * pred

        tgt = tgt + pred

        if tgt_pre is not None:
            tgt = rearrange(tgt, 'b c h w -> b (h w) c')
            tgt = torch.cat([tgt_pre, tgt], dim=1)

        return tgt


class AttnDownsample(nn.Module):
    def __init__(self, dim: int, window_size: int, num_heads: int = 16):
        super().__init__()
        self.q = nn.Parameter(torch.randn(1, num_heads, 1, dim // num_heads) * 0.01)
        self.kv = nn.Linear(dim, dim * 2)
        self.proj = nn.Linear(dim, dim)
        self.window_size = window_size
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5

    def forward(self, x: torch.Tensor, twod_shape: Tuple[int, int]) -> torch.Tensor:
        ntok = twod_shape[0] * twod_shape[1]
        x_pre = x[:, :-ntok]

        B = x.shape[0]
        ds_hw = tuple(s // self.window_size for s in twod_shape)

        x_spat = rearrange(
            x[:, -ntok:],
            'b (h d1 w d2) c -> (b h w) (d1 d2) c',
            h=ds_hw[0], w=ds_hw[1],
            d1=self.window_size, d2=self.window_size,
        )

        B, N, C = x_spat.shape

        k, v = self.kv(x_spat).reshape(B, N, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)

        q = (self.q * self.scale).expand(B, -1, -1, -1)
        attn = q @ k.transpose(-2, -1)
        attn = F.softmax(attn, dim=-1)
        x = attn @ v

        x = x.transpose(1, 2).reshape(B, C)
        x = self.proj(x)

        x = rearrange(x, '(b h w) c -> b (h w) c', b=x_pre.shape[0], h=ds_hw[0], w=ds_hw[1])

        x = torch.cat([x_pre, x], dim=1)
        return x


class HybridModel(nn.Module):
    def __init__(self, vit: tvit.VisionTransformer, conv: tconv.ConvNeXt, pretrained: bool = False,
                 concatenate: bool = False, **kwargs):
        super().__init__()
        self.conv = conv
        self.vit = vit
        self.concatenate = concatenate

        conv.stages = nn.ModuleList(conv.stages)
        vit.blocks = nn.ModuleList(vit.blocks)

        self._half_vit_idx = len(vit.blocks) // 2 + 1

        self._half_conv_idx = None
        x = torch.empty(1, 3, 256, 256)
        x = self.conv.stem(x)
        for i in range(len(conv.stages)):
            x = conv.stages[i](x)
            if self._half_conv_idx is None and x.shape[-2:] == (16, 16):
                self._half_conv_idx = i + 1
                half_conv_dim = x.shape[1]
            final_conv_dim = x.shape[1]

        self.vit_to_conv_fusion = Fuser(vit.embed_dim, half_conv_dim)
        self.conv_to_vit_fusion = Fuser(half_conv_dim, vit.embed_dim)
        self.vit_ds = AttnDownsample(vit.embed_dim, window_size=2)

        embed_dim = vit.embed_dim + (final_conv_dim if concatenate else 0)
        if not concatenate:
            self.final_fuse = Fuser(final_conv_dim, vit.embed_dim, gated=False)
        self.final_block = tvit.Block(embed_dim, num_heads=16)

        self.embed_dim = embed_dim

    @property
    def patch_size(self):
        return 32

    @property
    def no_fsdp_wrap_types(self):
        return {tvit.VisionTransformer, tconv.ConvNeXt}

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.forward_features(x)

    def forward_features(self, x: torch.Tensor) -> torch.Tensor:
        y_vit = self.vit.patch_generator(x)

        for i in range(self._half_vit_idx):
            y_vit = self.vit.blocks[i](y_vit)

        y_conv = self.conv.stem(x)
        for i in range(self._half_conv_idx):
            y_conv = self.conv.stages[i](y_conv)

        y_vit, y_conv = self.conv_to_vit_fusion(y_conv, y_vit), self.vit_to_conv_fusion(y_vit, y_conv)

        y_vit = self.vit_ds(y_vit, y_conv.shape[-2:])

        for i in range(self._half_vit_idx, len(self.vit.blocks)):
            y_vit = self.vit.blocks[i](y_vit)

        for i in range(self._half_conv_idx, len(self.conv.stages)):
            y_conv = self.conv.stages[i](y_conv)

        if self.concatenate:
            y_conv = rearrange(y_conv, 'b c h w -> b (h w) c')
            # Average pool across the board, and replicate for each cls/register token
            conv_summary = y_conv.mean(dim=1, keepdim=True).expand(-1, self.vit.patch_generator.num_cls_patches, -1)
            y_conv = torch.cat([conv_summary, y_conv], dim=1)
            y = torch.cat([y_vit, y_conv], dim=2)
        else:
            y = self.final_fuse(y_conv, y_vit)
        y = self.final_block(y)

        summary = y[:, :self.vit.patch_generator.num_cls_tokens]
        features = y[:, self.vit.patch_generator.num_cls_patches:]

        return summary, features


@register_model
def hybrid_base(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
    cfg = dict(num_classes=0, **kwargs)
    conv = tconv.convnextv2_base(pretrained=pretrained, **cfg)
    vit = tvit.vit_base_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)

    return HybridModel(vit, conv, pretrained, concatenate=concatenate)


@register_model
def hybrid_large(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
    cfg = dict(num_classes=0, **kwargs)
    conv = tconv.convnextv2_large(pretrained=pretrained, **cfg)
    vit = tvit.vit_large_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)

    return HybridModel(vit, conv, pretrained, concatenate=concatenate)


@register_model
def hybrid_huge(pretrained=False, concatenate: bool = False, weight_init: str = 'skip', **kwargs):
    cfg = dict(num_classes=0, **kwargs)
    conv = tconv.convnextv2_huge(pretrained=pretrained, **cfg)
    vit = et.vit_huge_patch16_224(pretrained=pretrained, weight_init=weight_init, **cfg)

    return HybridModel(vit, conv, pretrained, concatenate=concatenate)