Image Feature Extraction
Transformers
Safetensors
feature-extraction
custom_code
File size: 8,205 Bytes
39b9986
 
 
 
 
 
 
 
f6c0c44
 
 
 
39b9986
f6c0c44
39b9986
 
f6c0c44
 
 
 
 
 
 
 
 
 
39b9986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6c0c44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39b9986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6c0c44
 
 
 
 
 
 
 
 
 
 
39b9986
 
 
 
 
 
f6c0c44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# Copyright (c) 2023-2024, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import math
import warnings

import torch
from torch import nn
from torch.nn import functional as F

from timm.models import register_model
from timm.models.vision_transformer import (
    VisionTransformer,
    _create_vision_transformer as _timm_create_vision_transformer,
    Mlp,
    Block,
    LayerScale as TIMMLayerScale,
)

# Import these to also register them
from . import dinov2_arch


@register_model
def vit_tiny_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ ViT-Tiny (Vit-Ti/16)
    """
    model_args = dict(patch_size=14, embed_dim=192, depth=12, num_heads=3)
    model = _create_vision_transformer('vit_tiny_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_small_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ ViT-Small (ViT-S/16)
    """
    model_args = dict(patch_size=14, embed_dim=384, depth=12, num_heads=6)
    model = _create_vision_transformer('vit_small_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_base_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ ViT-Base (ViT-B/14) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_args = dict(patch_size=14, embed_dim=768, depth=12, num_heads=12)
    model = _create_vision_transformer('vit_base_patch14_224', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_base_patch16_v2_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_args = dict(
        patch_size=16, embed_dim=768, depth=12, num_heads=12, init_values=1e-5,
        reg_tokens=4, no_embed_class=True, img_size=518 * 16 // 14
    )
    model = _create_vision_transformer(
        'vit_base_patch14_reg4_dinov2', pretrained=pretrained, **dict(model_args, **kwargs))
    return model


@register_model
def vit_large_patch16_v2_224(pretrained: bool = False, **kwargs) -> VisionTransformer:
    """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    name = 'vit_large_patch14_reg4_dinov2'
    model_args = dict(
        patch_size=16, embed_dim=1024, depth=24, num_heads=16, init_values=1e-5,
        reg_tokens=4, no_embed_class=True, img_size=518 * 16 // 14
    )
    model = _create_vision_transformer(name, pretrained=pretrained, **dict(model_args, **kwargs))

    return model

@register_model
def vit_huge_patch16_224(pretrained=False, **kwargs) -> VisionTransformer:
    """ ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
    """
    model_args = dict(patch_size=16, embed_dim=1280, depth=32, num_heads=16)
    if pretrained:
        # There is no pretrained version of ViT-H/16, but we can adapt a ViT-H/14 for this purpose
        model = _create_vision_transformer('vit_huge_patch14_224', pretrained=True, **dict(model_args, **kwargs))
    else:
        model = _create_vision_transformer('vit_huge_patch16_224', pretrained=False, **dict(model_args, **kwargs))
    return model


@register_model
def vit_huge_patch16_224_mlpnorm(pretrained=False, **kwargs) -> VisionTransformer:
    """ ViT-Huge model (ViT-H/16) from original paper (https://arxiv.org/abs/2010.11929).
    """
    model = vit_huge_patch16_224(pretrained=pretrained, **kwargs)

    for m in model.modules():
        if isinstance(m, Mlp) and not isinstance(m.norm, nn.LayerNorm):
            m.norm = nn.LayerNorm(m.fc1.out_features)

    return model


@register_model
def vit_giant_patch16_224(pretrained=False, scaled_ln: bool = False, **kwargs) -> VisionTransformer:
    """ ViT-giant model (ViT-g/16) from original paper (https://arxiv.org/abs/2010.11929).
    """
    model_args = dict(patch_size=16, embed_dim=1536, depth=40, num_heads=24)
    model = _create_vision_transformer('vit_giant_patch16_224', pretrained=False, **dict(model_args, **kwargs))
    if scaled_ln:
        _apply_scaled_ln(model)
    return model


@register_model
def vit_bigG_patch14_224(pretrained=False, **kwargs) -> VisionTransformer:
    model_args = dict(patch_size=14, embed_dim=1664, depth=48, num_heads=16, init_values=1e-6)
    model = _create_vision_transformer('vit_bigG_patch14', pretrained=False, **dict(model_args, **kwargs))
    return model


def _create_vision_transformer(*args, **kwargs):
    model = _timm_create_vision_transformer(*args, **kwargs)
    _patch_layer_scale(model)
    return model


def _patch_layer_scale(model: VisionTransformer):
    def replace_ls(old_ls: TIMMLayerScale):
        new_ls = dinov2_arch.LayerScale(old_ls.gamma.shape[0], inplace=old_ls.inplace)
        new_ls.load_state_dict(old_ls.state_dict())
        return new_ls

    # Monkey patch: Replace TIMM's LayerScale with our modified DINOv2 one, that uses a param name
    # other than gamma, so that HFHub doesn't mess with it!
    for mod in model.modules():
        if isinstance(mod, Block):
            if isinstance(mod.ls1, TIMMLayerScale):
                mod.ls1 = replace_ls(mod.ls1)
            if isinstance(mod.ls2, TIMMLayerScale):
                mod.ls2 = replace_ls(mod.ls2)
    pass


class ScaledLayerNorm(nn.LayerNorm):
    '''
    https://arxiv.org/pdf/2502.05795v1
    '''
    def __init__(self, ln_base: nn.LayerNorm, depth: int = 0):
        super().__init__(ln_base.normalized_shape, eps=ln_base.eps, elementwise_affine=ln_base.elementwise_affine)
        self.load_state_dict(ln_base.state_dict())
        self.register_buffer('ln_scale', torch.tensor(1.0 / math.sqrt(depth)), persistent=False)

    def forward(self, x):
        y = super().forward(x)
        y = y * self.ln_scale
        return y


class DyT(nn.Module):
    def __init__(self, C: int, init_alpha: float):
        super().__init__()
        self.alpha = nn.Parameter(torch.full((1,), init_alpha))
        self.gamma = nn.Parameter(torch.ones(C))
        self.beta = nn.Parameter(torch.zeros(C))

    def forward(self, x: torch.Tensor):
        x = F.tanh(self.alpha * x)
        return self.gamma * x + self.beta

@register_model
def vit_large_dyt_patch16_224(pretrained: bool = False, **kwargs) -> VisionTransformer:
    """ ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).
    ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
    """
    model_args = dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16)
    model = _create_vision_transformer('vit_large_dyt_patch16_224', pretrained=pretrained, **dict(model_args, **kwargs))

    def _replace_ln_with_dyt(ln: nn.LayerNorm, depth: int):
        return DyT(ln.normalized_shape[0], init_alpha=0.9)
    _replace_ln(model, _replace_ln_with_dyt)

    return model


def _apply_scaled_ln(model: VisionTransformer):
    warnings.warn('Post-LayerNorm scaling activated!')

    _replace_ln(model, lambda ln, depth: ScaledLayerNorm(ln, depth=depth))

def _replace_ln(model: VisionTransformer, fn):
    def _inner_replace_ln(block: Block, depth: int, key: str):
        prev = getattr(block, key)
        if isinstance(prev, nn.LayerNorm):
            setattr(block, key, fn(prev, depth=depth))

    for i, block in enumerate(model.blocks):
        _inner_replace_ln(block, i + 1, 'norm1')
        _inner_replace_ln(block, i + 1, 'norm2')