Image Feature Extraction
Transformers
Safetensors
feature-extraction
custom_code
gheinrich commited on
Commit
31973d7
·
verified ·
1 Parent(s): 3b524fe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +181 -5
README.md CHANGED
@@ -1,5 +1,181 @@
1
- ---
2
- license: other
3
- license_name: nvidia-open-model-license
4
- license_link: https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: nvidia-open-model-license
4
+ license_link: https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf
5
+ ---
6
+
7
+ # Model Overview
8
+
9
+ ## Description
10
+
11
+ This model performs visual feature extraction.
12
+ For instance, RADIO generates image embeddings that can be used by a downstream model to classify images.
13
+
14
+ C-RADIOv2 models are available in multiple sizes:
15
+ * Base (90M parameters).
16
+ * Large (320M parameters).
17
+ * Huge (653M parameters).
18
+ * Gigantic (1.8B parameters).
19
+
20
+ C-RADIOv2 was trained for 1M steps (400k more steps than v1), using inverse frequency sampling for data balancing, and [PHI Standardization](https://arxiv.org/abs/2410.01680) for teacher distribution balancing.
21
+
22
+ This model is ready for commercial/non-commercial use.
23
+
24
+ ### License/Terms of Use
25
+
26
+ GOVERNING TERMS: Use of this model is governed by the [NVIDIA Open Model License Agreement](https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf).
27
+
28
+ ## Deployment Geography
29
+
30
+ Global.
31
+
32
+ ## Use Case
33
+
34
+ The embeddings generated by this model are expected to be used by a downstream application.
35
+ For example:
36
+
37
+ * Image-level understanding (image classification, curation, etc.).
38
+ * Dense processing (semantic segmentation, depth estimation, etc.).
39
+ * Integration into a Vision-Language Model.
40
+
41
+ ## Release Date
42
+
43
+ Huggingface: 03/26/2025 via [RADIO Collection of Models](https://huggingface.co/collections/nvidia/radio-669f77f1dd6b153f007dd1c6).
44
+
45
+ ## References
46
+
47
+ * [Paper](https://arxiv.org/abs/2312.06709)
48
+ * [Paper](https://arxiv.org/abs/2410.01680)
49
+ * [Paper](https://arxiv.org/abs/2412.07679)
50
+
51
+ ## Model Architecture
52
+
53
+ **Architecture Type:** Neural Network <br>
54
+ **Network Architecture:** Vision Transformer <br>
55
+
56
+ ## Input
57
+
58
+ **Input Type(s):** Image <br>
59
+ **Input Format(s):** Red, Green, Blue (RGB) <br>
60
+ **Input Parameters:** Two Dimensional (2D) <br>
61
+ **Other Properties Related to Input:** Image resolutions up to 2048x2028 in increments of 16 pixels <br>
62
+
63
+ ## Output
64
+
65
+ **Output Type(s):** Embeddings <br>
66
+ **Output Format:** Tensor <br>
67
+ **Output Parameters:** 2D <br>
68
+ **Other Properties Related to Output:** Downstream model required to leverage image features <br>
69
+
70
+ ## Software Integration
71
+
72
+ **Runtime Engine(s):**
73
+ * TAO- 24.10 <br>
74
+
75
+ **Supported Hardware Microarchitecture Compatibility:** <br>
76
+ * NVIDIA Ampere <br>
77
+ * NVIDIA Blackwell <br>
78
+ * NVIDIA Jetson <br>
79
+ * NVIDIA Hopper <br>
80
+ * NVIDIA Lovelace <br>
81
+ * NVIDIA Pascal <br>
82
+ * NVIDIA Turing <br>
83
+ * NVIDIA Volta <br>
84
+
85
+ **[Preferred/Supported] Operating System(s):** <br>
86
+ * Linux
87
+ * Linux 4 Tegra
88
+ * QNX
89
+ * Windows
90
+
91
+ ## Model Version(s)
92
+
93
+ * C-RADIOv2-B (90M parameters).
94
+ * C-RADIOv2-L (320M parameters).
95
+ * C-RADIOv2-H (653M parameters).
96
+ * C-RADIOv2-G (1.8B parameters).
97
+
98
+ **Links:**
99
+
100
+ * https://huggingface.co/nvidia/C-RADIOv2-B
101
+ * https://huggingface.co/nvidia/C-RADIOv2-L
102
+ * https://huggingface.co/nvidia/C-RADIOv2-H
103
+ * https://huggingface.co/nvidia/C-RADIOv2-G
104
+
105
+ # Training and Evaluation Datasets
106
+
107
+ ## Training Dataset
108
+
109
+ NV-CC-Img-Text-Dataset <br>
110
+ ** Data Collection Method by dataset <br>
111
+ * Automated <br>
112
+ ** Labeling Method by dataset <br>
113
+ * Not Applicable (no labels are needed) <br>
114
+ **Properties:** 700 Million Images <br>
115
+
116
+ ## Evaluation Dataset
117
+ **Link:** [ImageNet](https://www.image-net.org/) <br>
118
+ ** Data Collection Method by dataset <br>
119
+ * Automated <br>
120
+ ** Labeling Method by dataset <br>
121
+ * Human <br>
122
+
123
+ **Properties:** This dataset spans 1000 object classes and contains 1,281,167 training images, 50,000 validation images and 100,000 test images.<br>
124
+
125
+ ## Inference
126
+
127
+ **Engine:** PyTorch <br>
128
+ **Test Hardware:** A100 <br>
129
+
130
+ ## Ethical Considerations
131
+
132
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
133
+
134
+ For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards below.
135
+
136
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
137
+
138
+ ### Bias
139
+
140
+ Field | Response
141
+ :---------------------------------------------------------------------------------------------------|:---------------
142
+ Participation considerations from adversely impacted groups [protected classes](https://www.senate.ca.gov/content/protected-classes) in model design and testing: | None
143
+ Measures taken to mitigate against unwanted bias: | None
144
+
145
+
146
+ ### Explainability
147
+
148
+ Field | Response
149
+ :------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------
150
+ Intended Application & Domain: | Visual Feature Extraction
151
+ Model Type: | Vision Transformer
152
+ Intended Users: | Developers of downstream vision applications
153
+ Output: | Image embeddings
154
+ Describe how the model works: | The model takes an image as input, processes the image through multiple transformer blocks, and outputs summary and patch embeddings.
155
+ Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of: | Not Applicable
156
+ Technical Limitations: | This model generates image embeddings that can be used by a downstream model to, for example, classify images. The downstream model must be trained to leverage the visual embeddings.
157
+ Verified to have met prescribed NVIDIA quality standards: | Yes
158
+ Performance Metrics: | Image classification accuracy, semantic segmentation mean-over-intersection.
159
+ Potential Known Risks: | This model is only tested on input resolutions ranging from 256 to 2048, in increments of 16 pixels. Additionally, the generated embeddings might fail to disambiguate differences that appear evident to humans (e.g. two images showing different breeds of dogs might in fact produce very similar embeddings). Domain-specific evaluation is required for the target application.
160
+ Licensing: | [NVIDIA Open Model License](https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf)
161
+
162
+
163
+ ### Privacy
164
+
165
+ Field | Response
166
+ :----------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------
167
+ Generatable or reverse engineerable personal data? | None
168
+ Personal data used to create this model? | None
169
+ How often is dataset reviewed? | Before Every Release
170
+ Is there provenance for all datasets used in training? | Yes
171
+ Does data labeling (annotation, metadata) comply with privacy laws? | Yes
172
+ Is data compliant with data subject requests for data correction or removal, if such a request was made? | Yes
173
+
174
+ ### Safety
175
+
176
+ Field | Response
177
+ :---------------------------------------------------|:----------------------------------
178
+ Model Application(s): | Generation of visual embeddings
179
+ Describe the life critical impact (if present). | Not Applicable
180
+ Use Case Restrictions: | Abide by NVIDIA Open Model License Agreement
181
+ Model and dataset restrictions: | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to.