|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for Qwen2.""" |
|
|
|
from typing import Optional, Tuple |
|
|
|
from transformers.tokenization_utils import AddedToken |
|
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast |
|
from transformers.utils import logging |
|
from .tokenization_qwen2 import Qwen2Tokenizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
VOCAB_FILES_NAMES = { |
|
"vocab_file": "vocab.json", |
|
"merges_file": "merges.txt", |
|
"tokenizer_file": "tokenizer.json", |
|
} |
|
|
|
PRETRAINED_VOCAB_FILES_MAP = { |
|
"vocab_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/vocab.json"}, |
|
"merges_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/merges.txt"}, |
|
"tokenizer_file": { |
|
"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/tokenizer.json" |
|
}, |
|
} |
|
|
|
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768} |
|
|
|
|
|
class Qwen2TokenizerFast(PreTrainedTokenizerFast): |
|
""" |
|
Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level |
|
Byte-Pair-Encoding. |
|
|
|
Same with GPT2Tokenzier, this tokenizer has been trained to treat spaces like parts of the tokens so a word will |
|
be encoded differently whether it is at the beginning of the sentence (without space) or not: |
|
|
|
```python |
|
>>> from transformers import Qwen2TokenizerFast |
|
|
|
>>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer") |
|
>>> tokenizer("Hello world")["input_ids"] |
|
[9707, 1879] |
|
|
|
>>> tokenizer(" Hello world")["input_ids"] |
|
[21927, 1879] |
|
``` |
|
This is expected. |
|
|
|
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should |
|
refer to this superclass for more information regarding those methods. |
|
|
|
Args: |
|
vocab_file (`str`, *optional*): |
|
Path to the vocabulary file. |
|
merges_file (`str`, *optional*): |
|
Path to the merges file. |
|
tokenizer_file (`str`, *optional*): |
|
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that |
|
contains everything needed to load the tokenizer. |
|
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. Not applicable to this tokenizer. |
|
bos_token (`str`, *optional*): |
|
The beginning of sequence token. Not applicable for this tokenizer. |
|
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): |
|
The end of sequence token. |
|
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
""" |
|
|
|
vocab_files_names = VOCAB_FILES_NAMES |
|
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP |
|
max_model_input_sizes = MAX_MODEL_INPUT_SIZES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
slow_tokenizer_class = Qwen2Tokenizer |
|
|
|
def __init__( |
|
self, |
|
vocab_file=None, |
|
merges_file=None, |
|
tokenizer_file=None, |
|
unk_token="<|endoftext|>", |
|
bos_token=None, |
|
eos_token="<|endoftext|>", |
|
pad_token="<|endoftext|>", |
|
**kwargs, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
bos_token = ( |
|
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False) |
|
if isinstance(bos_token, str) |
|
else bos_token |
|
) |
|
eos_token = ( |
|
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False) |
|
if isinstance(eos_token, str) |
|
else eos_token |
|
) |
|
unk_token = ( |
|
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False) |
|
if isinstance(unk_token, str) |
|
else unk_token |
|
) |
|
pad_token = ( |
|
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False) |
|
if isinstance(pad_token, str) |
|
else pad_token |
|
) |
|
|
|
super().__init__( |
|
vocab_file, |
|
merges_file, |
|
tokenizer_file=tokenizer_file, |
|
unk_token=unk_token, |
|
bos_token=bos_token, |
|
eos_token=eos_token, |
|
pad_token=pad_token, |
|
**kwargs, |
|
) |
|
|
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
files = self._tokenizer.model.save(save_directory, name=filename_prefix) |
|
return tuple(files) |
|
|