Eagle2-9B / tokenization_qwen2_fast.py
Zhiding's picture
init
288b99c
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Qwen2."""
from typing import Optional, Tuple
from transformers.tokenization_utils import AddedToken
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import logging
from .tokenization_qwen2 import Qwen2Tokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_file": "tokenizer.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/vocab.json"},
"merges_file": {"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/merges.txt"},
"tokenizer_file": {
"qwen/qwen-tokenizer": "https://huggingface.co/qwen/qwen-tokenizer/resolve/main/tokenizer.json"
},
}
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
class Qwen2TokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
Same with GPT2Tokenzier, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import Qwen2TokenizerFast
>>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
>>> tokenizer("Hello world")["input_ids"]
[9707, 1879]
>>> tokenizer(" Hello world")["input_ids"]
[21927, 1879]
```
This is expected.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
Path to the vocabulary file.
merges_file (`str`, *optional*):
Path to the merges file.
tokenizer_file (`str`, *optional*):
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. Not applicable to this tokenizer.
bos_token (`str`, *optional*):
The beginning of sequence token. Not applicable for this tokenizer.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The token used for padding, for example when batching sequences of different lengths.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = MAX_MODEL_INPUT_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = Qwen2Tokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token=None,
eos_token="<|endoftext|>",
pad_token="<|endoftext|>",
**kwargs,
):
# We need to at least pass vocab_file and merges_file to base class
# in case a slow tokenizer needs to be initialized; other can be
# configured through files.
# following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token
bos_token = (
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
if isinstance(bos_token, str)
else bos_token
)
eos_token = (
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
if isinstance(eos_token, str)
else eos_token
)
unk_token = (
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
if isinstance(unk_token, str)
else unk_token
)
pad_token = (
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
if isinstance(pad_token, str)
else pad_token
)
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
**kwargs,
)
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)