File size: 17,046 Bytes
7bd0f2f 1913560 4679cbd 304eec6 114db73 7bd0f2f b2804d8 304eec6 b2804d8 1913560 b2804d8 02863c9 b154891 b2804d8 304eec6 b2804d8 304eec6 b2804d8 304eec6 b2804d8 304eec6 b2804d8 9e8c199 2ddf9be b2804d8 9e8c199 b2804d8 9d25eb8 b2804d8 9e8c199 b2804d8 9e8c199 b2804d8 304eec6 115d659 0d700fc 115d659 0d700fc 1913560 0d700fc 115d659 0d700fc 115d659 0d700fc 115d659 0d700fc 115d659 df8f715 115d659 df8f715 115d659 7e42e3a 115d659 df8f715 115d659 df8f715 115d659 df8f715 75dea92 115d659 df8f715 115d659 b2804d8 6019607 b2804d8 d49d773 b2804d8 e56c389 b2804d8 de15859 304eec6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
---
license: other
language:
- en
- es
- fr
- de
- ru
- zh
metrics:
- roc_auc
pipeline_tag: voice-activity-detection
library_name: nemo
tags:
- Multilingual
- MarbleNet
- pytorch
- speech
- audio
- VAD
- onnx
- onnxruntime
---
# Frame-VAD Multilingual MarbleNet v2.0
## Description:
Frame-VAD Multilingual MarbleNet v2.0 is a convolutional neural network for voice activity detection (VAD) that serves as the first step for Speech Recognition and Speaker Diarization. It is a frame-based model that outputs a speech probability for each 20 millisecond frame of the input audio. The model has 91.5K parameters, making it lightweight and efficient for real-time applications. <br>
To reduce false positive errors — cases where the model incorrectly detects speech when none is present — the model was trained with white noise and real-word noise perturbations. During training, the volume of audios was also varied. Additionally, the training data includes non-speech audio samples to help the model distinguish between speech and non-speech sounds (such as coughing, laughter, and breathing, etc.) <br>
**Key Features**
- Lightweight model with only 91.5K parameters
- Robust against false positive errors
- Outputs speech probability for each 20 ms audio frame
- Multilingual support: Chinese, English, French, German, Russian, and Spanish
This model is ready for commercial use. <br>
### License/Terms of Use:
GOVERNING TERMS: Your use of this model is governed by the [NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license).
### Deployment Geography:
Global <br>
### Use Case:
Developers, speech processing engineers, and AI researchers will use it as the first step for other speech processing models. <br>
## References:
[1] [Jia, Fei, Somshubra Majumdar, and Boris Ginsburg. "MarbleNet: Deep 1D Time-Channel Separable Convolutional Neural Network for Voice Activity Detection." ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021.](https://arxiv.org/abs/2010.13886) <br>
[2] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
<br>
## Model Architecture:
**Architecture Type:** Convolutional Neural Network (CNN) <br>
**Network Architecture:** MarbleNet <br>
**This model has 91.5K parameters** <br>
## Input: <br>
**Input Type(s):** Audio <br>
**Input Format:** .wav files <br>
**Input Parameters:** 1D <br>
**Other Properties Related to Input:** 16000 Hz Mono-channel Audio, Pre-Processing Not Needed <br>
## Output: <br>
**Output Type(s):** Sequence of speech probabilities for each 20 millisecond frame <br>
**Output Format:** Float Array <br>
**Output Parameters:** 1D <br>
**Other Properties Related to Output:** May need post-processing, such as smoothing, which reduces sudden fluctuations in detected speech probability for more natural transitions, and thresholding, which sets a cutoff value to determine whether a frame contains speech based on probability (e.g., classifying frames above 0.5 as speech and others as silence or noise). <br>
Our AI models are designed and/or optimized to run on NVIDIA GPU-accelerated systems. By leveraging NVIDIA’s hardware (e.g. GPU cores) and software frameworks (e.g., CUDA libraries), the model achieves faster training and inference times compared to CPU-only solutions.
## How to Use the Model:
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo).
```bash
pip install -U nemo_toolkit['asr']
```
The model is available for use in the NeMo toolkit [2], and can be used as a pre-trained checkpoint for inference.
### Automatically load the model
```python
import torch
import nemo.collections.asr as nemo_asr
vad_model = nemo_asr.models.EncDecFrameClassificationModel.from_pretrained(model_name="nvidia/frame_vad_multilingual_marblenet_v2.0")
# Move the model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
vad_model = vad_model.to(device)
vad_model.eval()
```
### Inference with PyTorch
First, let's get a sample
```bash
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
```
Then run the following:
```python
import librosa
# Load the audio
input_signal = librosa.load("2086-149220-0033.wav", sr=16000, mono=True)[0]
input_signal = torch.tensor(input_signal).unsqueeze(0).float()
input_signal_length = torch.tensor([input_signal.shape[1]]).long()
# Perform inference
with torch.no_grad():
torch_outputs = vad_model(
input_signal=input_signal.to(device),
input_signal_length=input_signal_length.to(device)
).cpu()
```
### Export to ONNX
```python
import onnx
from nemo.core import typecheck
typecheck.set_typecheck_enabled(False)
vad_model = vad_model.cpu()
ONNX_EXPORT_PATH = "frame_vad_multilingual_marblenet_v2.0.onnx"
# Preprocess input signal
processed_signal, processed_signal_length = vad_model.preprocessor(
input_signal=input_signal,
length=input_signal_length
)
# Define input example for ONNX export
inputs = {
"processed_signal": processed_signal,
"processed_signal_length": processed_signal_length
}
# Export
torch.onnx.export(
model=vad_model,
args=inputs,
f=ONNX_EXPORT_PATH,
input_names=list(inputs.keys()),
output_names=["output"],
dynamic_axes={
"processed_signal": {0: "batch_size", 2: "sequence_length"},
"processed_signal_length": {0: "batch_size"},
"output": {0: "batch_size", 1: "sequence_length"}
}
)
```
### Inference with ONNX Runtime
```python
import onnxruntime
# Load the ONNX model
session = onnxruntime.InferenceSession(
ONNX_EXPORT_PATH,
providers=["CPUExecutionProvider"]
)
# Prepare input for ONNX Runtime
ort_inputs = {
input.name: inputs[input.name].numpy()
for input in session.get_inputs()
}
# Run inference
onnx_outputs = session.run(None, ort_inputs)[0]
```
### RTTM Output from Frame-Level Speech Predictions
To generate RTTM (Rich Transcription Time Marked) files from audio using the pretrained model:
```bash
python <NEMO_ROOT>/examples/asr/speech_classification/frame_vad_infer.py \
--config-path="../conf/vad" \
--config-name="frame_vad_infer_postprocess.yaml" \
vad.model_path="nvidia/frame_vad_multilingual_marblenet_v2.0" \
vad.parameters.shift_length_in_sec=0.02 \
prepare_manifest.auto_split=True \
prepare_manifest.split_duration=7200 \
input_manifest=<Path of manifest file of evaluation data, where audio files should have unique names> \
out_manifest_filepath=<Path of output manifest file>
```
## Software Integration:
**Runtime Engine(s):**
* NeMo-2.3.0 <br>
**Supported Hardware Microarchitecture Compatibility:** <br>
* [NVIDIA Ampere] <br>
* [NVIDIA Blackwell] <br>
* [NVIDIA Jetson] <br>
* [NVIDIA Hopper] <br>
* [NVIDIA Lovelace] <br>
* [NVIDIA Pascal] <br>
* [NVIDIA Turing] <br>
* [NVIDIA Volta] <br>
## Preferred/Supported Operating System(s):
* [Linux] <br>
## Model Version(s):
Frame-VAD Multilingual MarbleNet v2.0 <br>
## Training, Testing, and Evaluation Datasets:
### Training Dataset:
**Link:**
1. [ICSI (en)](https://groups.inf.ed.ac.uk/ami/icsi/download/)
2. [AMI (en)](https://groups.inf.ed.ac.uk/ami/corpus/)
3. [MLS (fr, es)](https://www.openslr.org/94/)
4. [MCV7 (de, ru)](https://commonvoice.mozilla.org/en/datasets)
5. [RULS (ru)](https://www.openslr.org/96/)
6. [SOVA (ru)](https://github.com/sovaai/sova-dataset)
7. [Aishell2 (zh)](https://www.aishelltech.com/)
8. [Librispeech (en)](https://www.openslr.org/12)
9. [Fisher (en)](https://www.ldc.upenn.edu/)
10. [MUSAN (noise)](https://www.openslr.org/17/)
11. [Freesound (noise)](https://freesound.org/)
12. [Vocalsound (noise)](https://github.com/YuanGongND/vocalsound)
13. [Ichbi (noise)](https://bhichallenge.med.auth.gr/ICBHI_2017_Challenge)
14. [Coswara (noise)](https://github.com/iiscleap/Coswara-Data) <br>
Data Collection Method by dataset: <br>
* Hybrid: Human, Annotated, Synthetic <br>
Labeling Method by dataset: <br>
* Hybrid: Human, Annotated, Synthetic <br>
**Properties:**
2600 hours of real-world data, 1000 hours of synthetic data, and 330 hours of noise data
<br>
### Testing Dataset:
**Link:**
1. [Freesound (noise)](https://freesound.org/)
2. [MUSAN (noise)](https://www.openslr.org/17/)
3. [Librispeech (en)](https://www.openslr.org/12)
4. [Fisher (en)](https://www.ldc.upenn.edu/)
5. [MLS (fr, es)](https://www.openslr.org/94/)
6. [MCV7 (de, ru)](https://commonvoice.mozilla.org/en/datasets)
7. [AMI (en)](https://groups.inf.ed.ac.uk/ami/corpus/)
8. [Aishell2 (zh)](https://www.aishelltech.com/)
9. [CH109 (en)](https://catalog.ldc.upenn.edu/LDC97S42) <br>
Data Collection Method by dataset: <br>
* Hybrid: Human, Annotated <br>
Labeling Method by dataset: <br>
* Hybrid: Human, Annotated <br>
**Properties:**
Around 100 hours of multilingual (Chinese, English, French, German, Russian, Spanish) audio data <br>
### Evaluation Dataset:
**Link:**
1. [VoxConverse-test](https://github.com/joonson/voxconverse/tree/master)
2. [VoxConverse-dev](https://github.com/joonson/voxconverse/tree/master)
3. [AMI-test](https://github.com/BUTSpeechFIT/AMI-diarization-setup/tree/main/only_words/rttms)
4. [Earnings21](https://github.com/revdotcom/speech-datasets/tree/main/earnings21)
5. [AISHELL4-test](https://www.openslr.org/111/)
6. [CH109](https://catalog.ldc.upenn.edu/LDC97S42)
7. [AVA-SPEECH](https://github.com/rafaelgreca/ava-speech-downloader) <br>
Data Collection Method by dataset: <br>
* Hybrid: Human, Annotated <br>
Labeling Method by dataset: <br>
* Hybrid: Human, Annotated <br>
**Properties:**
Around 182 hours of multilingual (Chinese, English) audio data <br>
# Inference:
**Engine:** NVIDIA NeMo <br>
**Test Hardware:** <br>
* RTX 5000 <br>
* A100 <br>
* V100 <br>
# Performance:
The ROC-AUC performance is listed in the following table. A higher ROC-AUC indicates better performance.
| Eval Dataset | ROC-AUC |
|------------------|----------|
| VoxConverse-test | 96.65 |
| VoxConverse-dev | 97.59 |
| AMI-test | 96.25 |
| Earnings21 | 97.11 |
| AISHELL4-test | 92.27 |
| CH109 | 94.44 |
| AVA-SPEECH | 95.26 |
## Ethical Considerations
NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards [here](https://developer.nvidia.com/blog/enhancing-ai-transparency-and-ethical-considerations-with-model-card/).
Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
## Bias
Field | Response
:---------------------------------------------------------------------------------------------------|:---------------
Participation considerations from adversely impacted groups [protected classes](https://www.senate.ca.gov/content/protected-classes) in model design and testing: | None
Measures taken to mitigate against unwanted bias: | To reduce false positive errors — cases where the model incorrectly detects speech when none is present — the model was trained with white noise and real-word noise perturbations. During training, the volume of audios was also varied. Additionally, the training data includes non-speech audio samples to help the model distinguish between speech and non-speech sounds (such as coughing, laughter, and breathing, etc.)
Bias Metric (If Measured): | False Positive Rate
## Explainability
Field | Response
:------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------
Intended Domain: | Voice Activity Detection (VAD)
Model Type: | Convolutional Neural Network (CNN)
Intended Users: | Developers, Speech Processing Engineers, AI Researchers
Output: | Sequence of speech probabilities for each 20 millisecond audio frame
Describe how the model works: | The model processes input audio by extracting spectrogram features, which are then passed through MarbleNet—a lightweight CNN-based model designed for VAD. The CNN learns to detect patterns associated with speech activity and outputs a probability score indicating the presence of speech in each 20 millisecond frame
Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of: | Not Applicable
Technical Limitations: | The model operates on 20 millisecond frames. While it supports longer frames by breaking them into smaller segments, it does not support outputs with a finer granularity than 20 milliseconds.
Verified to have met prescribed NVIDIA quality standards: | Yes
Performance Metrics: | Accuracy (False Positive Rate, ROC-AUC score), Latency, Throughput
Potential Known Risks: | While the model was trained on a limited number of languages, including Chinese, English, French, Spanish, German, and Russian, the model may experience a degradation in quality for languages and accents that are not included in the training dataset
Licensing: | [NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license)
## Privacy
Field | Response
:----------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------
Generatable or reverse engineerable personal data? | None
Personal data used to create this model? | None
How often is dataset reviewed? | Before Release
Is there provenance for all datasets used in training? | Yes
Does data labeling (annotation, metadata) comply with privacy laws? | Yes
Is data compliant with data subject requests for data correction or removal, if such a request was made? | Yes
## Safety
Field | Response
:---------------------------------------------------|:----------------------------------
Model Application(s): | Automatic Speech Recognition, Speaker Diarization, Speech Processing, Voice Activity Detection
List types of specific high-risk AI systems, if any, in which the model can be integrated: Select from the following: [Biometrics] OR [Critical infrastructure] OR [Machinery and Robotics] OR [Medical Devices] OR [Vehicles] OR [Aviation] OR [Education and vocational training] OR [Employment and Workers Management] <br>
Describe the life critical impact (if present). | Not Applicable
Use Case Restrictions: | Abide by [NVIDIA Open Model License Agreement](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license)
Model and dataset restrictions: | The Principle of least privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training, and dataset license constraints adhered to. |