NeMo
PyTorch
text generation
causal-lm
File size: 5,081 Bytes
98e5a5c
d0033e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98e5a5c
d0033e0
98e5a5c
18c8a57
d0033e0
 
 
 
 
 
 
 
 
 
 
 
c2444f4
d0033e0
c2444f4
d0033e0
 
 
 
 
 
 
 
06cf5d0
d0033e0
 
 
 
 
 
 
 
 
 
78609cb
d0033e0
78609cb
d0033e0
 
 
 
78609cb
d0033e0
 
 
 
 
 
 
 
 
 
 
 
 
104f750
d0033e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2444f4
 
d0033e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
language:
 - en
 - ru
 - de
 - es
 - fr
 - ja
 - it
 - vi
 - nl
 - pl
 - pt
 - id
 - fa
 - ar
 - el
 - tr
 - cs
 - zh
 - ro
 - sv
 - hu
 - uk
 - bg
 - no
 - hi
 - fi
 - da
 - sk
 - ko
 - hr
 - ca
 - he
 - bn
 - lt
 - ta
 - sr
 - sl
 - et
 - lv
 - ne
 - mr
 - ka
 - ml
 - mk
 - ur
 - sq
 - kk
 - te
 - hy
 - az
 - is
 - gl
 - kn
library_name: nemo
tags:
- text generation
- pytorch
- causal-lm
license: cc-by-4.0

---
# GPT-2B-001

<style>
img {
 display: inline;
}
</style>

|[![Model architecture](https://img.shields.io/badge/Model%20Arch-Transformer%20Decoder-green)](#model-architecture)|[![Model size](https://img.shields.io/badge/Params-2B-green)](#model-architecture)|[![Language](https://img.shields.io/badge/Language-Multilingual-green)](#datasets)


## Model Description

GPT-2B-001 is a transformer-based language model. GPT refers to a class of transformer decoder-only models similar to GPT-2 and 3 while 2B refers to the total trainable parameter count (2 Billion) [1, 2].

This model was trained on 1.1T tokens with [NeMo](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/intro.html).

## Model Architecture improvements

- The model uses the SwiGLU activation function [4]
- Rotary positional embeddings (RoPE) [5]
- Maximum sequence length of 4,096 compared to 2,048 in https://huggingface.co/nvidia/nemo-megatron-gpt-20B.
- No dropout.
- No bias terms in all linear layers.
- United embedding and output layers.

## Getting started

Note: You will need NVIDIA Ampere or Hopper GPUs to work with this model.

### Step 1: Install NeMo and dependencies

You will need to install NVIDIA Apex and NeMo. 

```
git clone https://github.com/NVIDIA/apex.git
cd apex
git checkout 03c9d80ed54c0eaa5b581bf42ceca3162f085327
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" --global-option="--fast_layer_norm" --global-option="--distributed_adam" --global-option="--deprecated_fused_adam" ./
```

```
pip install nemo_toolkit['nlp']==1.17.0
``` 

Alternatively, you can use NeMo Megatron training docker container with all dependencies pre-installed.

### Step 2: Launch eval server 

**Note.** The example below launches a model variant with Tensor Parallelism (TP) of 1 and Pipeline Parallelism (PP) of 1 on 1 GPU.


```
git clone https://github.com/NVIDIA/NeMo.git 
cd NeMo/examples/nlp/language_modeling
git checkout v1.11.0
python megatron_gpt_eval.py gpt_model_file=nemo_2b_bf16_tp1.nemo server=True tensor_model_parallel_size=1 trainer.devices=1
```

### Step 3: Send prompts to your model!
```python
import json
import requests

port_num = 5555
headers = {"Content-Type": "application/json"}

def request_data(data):
    resp = requests.put('http://localhost:{}/generate'.format(port_num),
                        data=json.dumps(data),
                        headers=headers)
    sentences = resp.json()['sentences']
    return sentences


data = {
    "sentences": ["Tell me an interesting fact about space travel."]*1,
    "tokens_to_generate": 50,
    "temperature": 1.0,
    "add_BOS": True,
    "top_k": 0,
    "top_p": 0.9,
    "greedy": False,
    "all_probs": False,
    "repetition_penalty": 1.2,
    "min_tokens_to_generate": 2,
}

sentences = request_data(data)
print(sentences)
```


## Training Data

The model was trained on 1.1T tokens obtained from publicly available data sources. The dataset comprises 53 languages and code.

## Evaluation results

*Zero-shot performance.* Evaluated using [LM Evaluation Test Suite from AI21](https://github.com/AI21Labs/lm-evaluation)

| ARC-Challenge	| ARC-Easy | RACE-middle |Winogrande | RTE | BoolQA | HellaSwag | PiQA |
| ------------- | -------- | ----------- | ----------| --- | ------ | --------- | ---- |
| 0.3558        | 0.45300  | 0.3997      | 0.5801    | 0.556 | 0.5979 | 0.592 | 0.7437 | 

## Limitations

The model was trained on the data originally crawled from the Internet. This data contains toxic language and societal biases. Therefore, the model may amplify those biases and return toxic responses especially when prompted with toxic prompts.
We did not perform any bias/toxicity removal or model alignment on this checkpoint.

## References

[1] [Improving Language Understanding by Generative Pre-Training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf)

[2] [Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism](https://arxiv.org/pdf/1909.08053.pdf)

[3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)

[4] [GLU Variants Improve Transformer](https://arxiv.org/abs/2002.05202)

[5] [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/abs/2104.09864)

## Licence

License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.