File size: 117,310 Bytes
6015b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85e5b83
6015b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e0e6a3
 
 
 
 
 
 
 
6015b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6abbf5e
6015b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85e5b83
6015b31
 
 
 
 
 
 
 
 
 
85e5b83
6015b31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
import inspect
import math
import warnings
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_attn_mask_utils import (
    _prepare_4d_causal_attention_mask,
    _prepare_4d_causal_attention_mask_for_sdpa,
)

from transformers.modeling_outputs import (
    MoeCausalLMOutputWithPast,
    MoeModelOutputWithPast,
    SequenceClassifierOutputWithPast,
)

from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_flash_attn_greater_or_equal_2_10,
    logging,
    replace_return_docstrings,
)

from transformers.utils.import_utils import is_torch_fx_available
from .configuration_hymba import HymbaConfig
from torch.utils.checkpoint import checkpoint


from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa

_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)

from einops import rearrange, repeat, reduce, pack, unpack
from einops.layers.torch import Rearrange


if is_torch_fx_available():
    if not is_torch_greater_or_equal_than_1_13:
        import torch.fx

    _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)


from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update


is_fast_path_available = all(
    (selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
)

logger = logging.get_logger(__name__)

_CONFIG_FOR_DOC = "HymbaConfig"


def pad_at_dim(t, pad: Tuple[int, int], dim = -1, value = 0.):
    if pad == (0, 0):
        return t

    dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
    zeros = ((0, 0) * dims_from_right)
    return F.pad(t, (*zeros, *pad), value = value)

# Adapted from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func
def load_balancing_loss_func(
        gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
) -> float:
    r"""
    Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.

    See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
    function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
    experts is too unbalanced.

    Args:
        gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
            Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of
            shape [batch_size X sequence_length, num_experts].
        attention_mask (`torch.Tensor`, None):
            The attention_mask used in forward function
            shape [batch_size X sequence_length] if not None.
        num_experts (`int`, *optional*):
            Number of experts

    Returns:
        The auxiliary loss.
    """
    if gate_logits is None or not isinstance(gate_logits, tuple):
        return 0

    if isinstance(gate_logits, tuple):
        compute_device = gate_logits[0].device
        concatenated_gate_logits = torch.cat(
            [layer_gate.to(compute_device) for layer_gate in gate_logits if layer_gate.shape[1] > 1], dim=0
        )

    routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)

    _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)

    expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)

    if attention_mask is None:
        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = torch.mean(expert_mask.float(), dim=0)

        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.mean(routing_weights, dim=0)
    else:
        batch_size, sequence_length = attention_mask.shape
        num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)

        # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
        expert_attention_mask = (
            attention_mask[None, :, :, None, None]
                .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
                .reshape(-1, top_k, num_experts)
                .to(compute_device)
        )

        # Compute the percentage of tokens routed to each experts
        tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
            expert_attention_mask, dim=0
        )

        # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
        router_per_expert_attention_mask = (
            attention_mask[None, :, :, None]
                .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
                .reshape(-1, num_experts)
                .to(compute_device)
        )

        # Compute the average probability of routing to these experts
        router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
            router_per_expert_attention_mask, dim=0
        )

    overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
    return overall_loss * num_experts


# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


class HymbaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        HymbaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


class PerheadHymbaRMSNorm(nn.Module):
    def __init__(self, hidden_size, num_heads, eps=1e-6):
        """
        For per-head kq normalization
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(1, num_heads, 1, hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        # assert 1==0, f"hiddens_states shape: {hidden_states.shape}" # [bsz, num_heads, seq_len, head_dim]
        assert hidden_states.shape[1] == self.weight.shape[1], f"hidden_state: {hidden_states.shape}, weight: {self.weight.shape}"
        assert hidden_states.shape[3] == self.weight.shape[3], f"hidden_state: {hidden_states.shape}, weight: {self.weight.shape}"
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)

        # variance = hidden_states.pow(2).mean(-1, keepdim=True)
        # hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        # return self.weight * hidden_states.to(input_dtype)

        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)
        

class HymbaOnlyNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        HymbaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        # self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return hidden_states.to(input_dtype)


class LlamaRotaryEmbedding(nn.Module):
    def __init__(self, config, dim, base=10000, device=None, scaling_factor=1.0):
        super().__init__()
        self.scaling_factor = scaling_factor
        self.dim = dim
        self.base = base
        self.config = config
        
        self.rope_type = config.rope_type
        
        self.factor = 2
        
        max_position_embeddings = self.config.max_position_embeddings

        if config.rope_type is None or config.rope_type == "default":
            inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
            self.max_seq_len_cached = max_position_embeddings

        elif config.rope_type == 'ntk':
            assert self.config.orig_max_position_embeddings is not None
            orig_max_position_embeddings = self.config.orig_max_position_embeddings
            
            base = base * ((self.factor * max_position_embeddings / orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
            
            self.max_seq_len_cached = orig_max_position_embeddings
            
        elif config.rope_type == 'dynamic_ntk':
            inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
            self.original_inv_freq = inv_freq
            self.max_seq_len_cached = self.config.orig_max_position_embeddings
                
        else:
            raise ValueError(f"Not support rope_type: {config.rope_type}")

        self.register_buffer("inv_freq", inv_freq, persistent=False)
        

    def _dynamic_frequency_update(self, position_ids, device):
        """
        dynamic RoPE layers should recompute `inv_freq` in the following situations:
        1 - growing beyond the cached sequence length (allow scaling)
        2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
        """
        
        seq_len = torch.max(position_ids) + 1
        if seq_len > self.max_seq_len_cached:  # growth
            base = self.base * ((self.factor * seq_len / self.config.orig_max_position_embeddings) - (self.factor - 1)) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
            
            self.register_buffer("inv_freq", inv_freq, persistent=False)
            self.max_seq_len_cached = seq_len

        if seq_len < self.config.orig_max_position_embeddings and self.max_seq_len_cached > self.config.orig_max_position_embeddings:  # reset
            self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
            self.max_seq_len_cached = self.config.orig_max_position_embeddings
        

            
    @torch.no_grad()
    def forward(self, x, position_ids):
        if self.rope_type == 'dynamic_ntk':
            self._dynamic_frequency_update(position_ids, device=x.device)
            
        # x: [bs, num_attention_heads, seq_len, head_size]
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        # Force float32 since bfloat16 loses precision on long contexts
        # See https://github.com/huggingface/transformers/pull/29285
        device_type = x.device.type
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()
        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    if q is not None:
        q_embed = (q * cos) + (rotate_half(q) * sin)

    else:
        q_embed = None
    
    if k is not None:
        k_embed = (k * cos) + (rotate_half(k) * sin)
    else:
        k_embed = None
    return q_embed, k_embed    

# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)



class HybridMambaAttentionDynamicCache(DynamicCache):
    """
    A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
    (which has a constant shape regardless of seq_len).

    This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
    and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
    For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
    while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
    For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
    while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
    and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
    """

    def __init__(self, config, batch_size, dtype=torch.float16, device=None, layer_type=None):
        self.dtype = dtype
        # self.layers_block_type = config.layers_block_type
        self.has_previous_state = False  # only used by mamba
        intermediate_size = config.mamba_expand * config.hidden_size
        ssm_state_size = config.mamba_d_state
        conv_kernel_size = config.mamba_d_conv
        self.conv_states = []
        self.ssm_states = []

        self.layer_type = layer_type

        for i in range(config.num_hidden_layers):
            if layer_type is None:
                has_mamba_state = True
            else:
                has_mamba_state = self.layer_type[i] == 'h' or self.layer_type[i] == 'm'
            
            if has_mamba_state:
                if hasattr(config, 'conv_dim'):
                    conv_dim = config.conv_dim[str(i)]
                else:
                    conv_dim = intermediate_size
                self.conv_states += [
                    torch.zeros(batch_size, conv_dim, conv_kernel_size, device=device, dtype=dtype)
                ]
                self.ssm_states += [
                    torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
                ]
            else:
                self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
                self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]

        self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
        self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]

        self.mamba_past_length = [0 for _ in range(config.num_hidden_layers)]

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Update the cache
        if self.key_cache[layer_idx].shape[-1] == 0:
            self.key_cache[layer_idx] = key_states
            self.value_cache[layer_idx] = value_states
        else:
            self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
            self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)

        return self.key_cache[layer_idx], self.value_cache[layer_idx]

    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Reorders the cache for beam search, given the selected beam indices."""
        for layer_idx in range(len(self.key_cache)):
            device = self.key_cache[layer_idx].device
            self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
            device = self.value_cache[layer_idx].device
            self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))

            device = self.conv_states[layer_idx].device
            self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
            device = self.ssm_states[layer_idx].device
            self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # take any layer that contains cache and not empty tensor

        if self.layer_type[layer_idx] == 'm':
            return self.mamba_past_length[layer_idx]

        if self.key_cache[layer_idx].shape[-1] == 0:
            return 0

        return self.key_cache[layer_idx].shape[-2]

    def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
        raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")

    @classmethod
    def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
        raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
    

@dataclass
class MambaCacheParams:
    seqlen_offset: int = 0
    conv_states: Dict[int, torch.Tensor] = field(default_factory=dict)
    ssm_states: Dict[int, torch.Tensor] = field(default_factory=dict)



# Adapted from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Hymba
class HymbaAttention(nn.Module):
    """
    Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
    and "Generating Long Sequences with Sparse Transformers".
    """

    def __init__(self, config: HymbaConfig, layer_idx: Optional[int] = None, reuse_kv=False, output_hidden_size=None, attn_only_wo_proj=False):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )

        # self.hidden_size = config.hidden_size
        self.hidden_size = config.attn_hidden_size if config.attn_hidden_size > 0 else config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_theta = config.rope_theta

        self.attn_only_wo_proj = attn_only_wo_proj

        self.kq_head_dim = config.kq_head_dim if config.kq_head_dim > 0 else self.head_dim
        self.v_head_dim = config.v_head_dim if config.v_head_dim > 0 else self.head_dim

        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.is_causal = True
        self.attention_dropout = config.attention_dropout


        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
                f" and `num_heads`: {self.num_heads})."
            )
            
        if not self.attn_only_wo_proj:
            self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.kq_head_dim, bias=False)

        self.reuse_kv = reuse_kv

        if not self.attn_only_wo_proj and not self.reuse_kv:
            self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.kq_head_dim, bias=False)
            self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.v_head_dim, bias=False)

        if output_hidden_size is None:
            output_hidden_size = self.hidden_size

        if not self.attn_only_wo_proj:
            self.o_proj = nn.Linear(self.num_heads * self.v_head_dim, output_hidden_size, bias=False)

        if self.config.kq_norm == "rms":
            self.k_norm = HymbaRMSNorm(self.kq_head_dim)
            self.q_norm = HymbaRMSNorm(self.kq_head_dim)
        elif self.config.kq_norm == "perhead-rms":
            self.k_norm = PerheadHymbaRMSNorm(self.kq_head_dim, self.num_key_value_heads)
            self.q_norm = PerheadHymbaRMSNorm(self.kq_head_dim, self.num_heads)
        elif self.config.kq_norm == "none":
            self.k_norm = None
            self.q_norm = None
        else:
            raise NotImplementedError(f"Unknown kq_norm: {self.config.kq_norm}")

        if self.config.rope:
            self._init_rope()


    def set_rope(self, rope_type, orig_max_position_embeddings, max_position_embeddings):
        self.config.rope_type = rope_type
        self.config.orig_max_position_embeddings = orig_max_position_embeddings
        self.config.max_position_embeddings = max_position_embeddings
        
        self._init_rope()
            
            
    def _init_rope(self):
        self.rotary_emb = LlamaRotaryEmbedding(
            config=self.config,
            dim=self.kq_head_dim,
            base=self.rope_theta,
            device=torch.device("cuda"),
            ) 

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Cache] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
            kv_last_layer = None,
            # kv_proj_last_layer = None,
            use_swa=False,
            query_states = None,
            key_states=None,
            value_states=None,
            **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        raise NotImplementedError("HymbaAttention is an abstract class. Use one of the subclasses.")


# Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Hymba
class HymbaFlashAttention2(HymbaAttention):
    """
    Hymba flash attention module. This module inherits from `HymbaAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def forward(
            self,
            hidden_states: torch.Tensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Cache] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
            kv_last_layer=None,
            # kv_proj_last_layer = None,
            use_swa=False,
            query_states = None,
            key_states=None,
            value_states=None,
            **kwargs,
    ):

        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

            # overwrite attention_mask with padding_mask
            attention_mask = kwargs.pop("padding_mask")

        if self.attn_only_wo_proj:
            assert query_states is not None
            bsz, q_len, _ = query_states.size()
        else:
            bsz, q_len, _ = hidden_states.size()

        if not self.attn_only_wo_proj:
            query_states = self.q_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

        if self.q_norm is not None:
            query_states = self.q_norm(query_states)
            
        if self.config.rope:
            if self.attn_only_wo_proj:
                cos, sin = self.rotary_emb(query_states, position_ids)
            else:
                cos, sin = self.rotary_emb(hidden_states, position_ids)
            query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin)

        
        if self.reuse_kv:
            assert kv_last_layer is not None
            key_states, value_states = kv_last_layer  # (batch, num_heads, slen, head_dim)

        else:            
            if not self.attn_only_wo_proj:
                key_states = self.k_proj(hidden_states)
                value_states = self.v_proj(hidden_states)

            key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2)
            value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2)

            if self.k_norm is not None:
                key_states = self.k_norm(key_states)
            
            if self.config.rope:
                _, key_states = apply_rotary_pos_emb(None, key_states, cos, sin)

        
        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None and not self.reuse_kv:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

        use_sliding_windows = (
                _flash_supports_window_size
                and getattr(self.config, "sliding_window", None) is not None
                and kv_seq_len > (self.config.sliding_window + self.config.num_memory_tokens if self.config.num_memory_tokens > 0 else self.config.sliding_window)
                and use_swa
        )

        if not _flash_supports_window_size:
            logger.warning_once(
                "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
                " make sure to upgrade flash-attn library."
            )

        swa_processed_flag = False
        if past_key_value is not None and use_cache and not self.reuse_kv:
            kv_layer_idx = self.layer_idx

            cache_has_contents = past_key_value.get_seq_length(kv_layer_idx) > 0
            
            if (
                    getattr(self.config, "sliding_window", None) is not None
                    and kv_seq_len > (self.config.sliding_window + self.config.num_memory_tokens if self.config.num_memory_tokens > 0 else self.config.sliding_window)
                    and cache_has_contents
                    and use_swa
            ):              
                slicing_tokens = 1 - self.config.sliding_window

                past_key = past_key_value[kv_layer_idx][0]
                past_value = past_key_value[kv_layer_idx][1]
                
                if self.config.num_memory_tokens > 0:
                    # num_fetched_memory_tokens = min(kv_seq_len - self.config.sliding_window, self.config.num_memory_tokens)
                    num_fetched_memory_tokens = self.config.num_memory_tokens

                    past_key = torch.cat([past_key[:, :, :num_fetched_memory_tokens, :], past_key[:, :, slicing_tokens:, :]], dim=-2).contiguous()
                    past_value = torch.cat([past_value[:, :, :num_fetched_memory_tokens, :], past_value[:, :, slicing_tokens:, :]], dim=-2).contiguous()
                    
                else:
                    past_key = past_key[:, :, slicing_tokens:, :].contiguous()
                    past_value = past_value[:, :, slicing_tokens:, :].contiguous()

                past_key_value.key_cache[kv_layer_idx] = past_key
                past_key_value.value_cache[kv_layer_idx] = past_value
                                                        
                if attention_mask is not None:
                    attention_mask = attention_mask[:, slicing_tokens:]
                    attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
                
                swa_processed_flag = True
                            
            key_states, value_states = past_key_value.update(key_states, value_states, kv_layer_idx)
            
        # repeat k/v heads if n_kv_heads < n_heads
        key_states_no_repeat = key_states
        value_states_no_repeat = value_states

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        dropout_rate = 0.0 if not self.training else self.attention_dropout

        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        # Reashape to the expected shape for Flash Attention
        query_states = query_states.transpose(1, 2)  # (batch, slen, num_heads, head_dim)
        key_states = key_states.transpose(1, 2)  # (batch, slen, num_heads, head_dim)
        value_states = value_states.transpose(1, 2)  # (batch, slen, num_heads, head_dim)
        
        attn_output = self._flash_attention_forward(
            query_states,
            key_states,
            value_states,
            attention_mask,
            q_len,
            dropout=dropout_rate,
            use_sliding_windows=use_sliding_windows and not swa_processed_flag,
        )

        v_dim = value_states.shape[-2] * value_states.shape[-1]
        attn_output = attn_output.reshape(bsz, q_len, v_dim).contiguous()

        if self.attn_only_wo_proj:
            return attn_output, (key_states_no_repeat, value_states_no_repeat)
        
        attn_output = self.o_proj(attn_output)
            
        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat)

    def _flash_attention_forward(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            query_length,
            dropout=0.0,
            softmax_scale=None,
            use_sliding_windows=False,
    ):
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.

        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`int`, *optional*):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
            use_sliding_windows (`bool`, *optional*):
                Whether to activate sliding window attention.
        """
        if not self._flash_attn_uses_top_left_mask:
            causal = self.is_causal
        else:
            causal = self.is_causal and query_length != 1

        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            if value_states.shape[-1] == query_states.shape[-1] * 2:
                value_states1 = value_states[...,:query_states.shape[-1]]

                batch_size = query_states.shape[0]
                
                query_states1, key_states1, value_states1, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                    query_states, key_states, value_states1, attention_mask, query_length
                )

                cu_seqlens_q, cu_seqlens_k = cu_seq_lens
                max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

                if not use_sliding_windows:
                    attn_output_unpad1 = flash_attn_varlen_func(
                        query_states1,
                        key_states1,
                        value_states1,
                        cu_seqlens_q=cu_seqlens_q,
                        cu_seqlens_k=cu_seqlens_k,
                        max_seqlen_q=max_seqlen_in_batch_q,
                        max_seqlen_k=max_seqlen_in_batch_k,
                        dropout_p=dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                    )
                else:
                    attn_output_unpad1 = flash_attn_varlen_func(
                        query_states1,
                        key_states1,
                        value_states1,
                        cu_seqlens_q=cu_seqlens_q,
                        cu_seqlens_k=cu_seqlens_k,
                        max_seqlen_q=max_seqlen_in_batch_q,
                        max_seqlen_k=max_seqlen_in_batch_k,
                        dropout_p=dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                        window_size=(self.config.sliding_window, self.config.sliding_window),
                    )

                attn_output1 = pad_input(attn_output_unpad1, indices_q, batch_size, query_length)

                value_states2 = value_states[...,query_states.shape[-1]:]

                query_states2, key_states2, value_states2, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                    query_states, key_states, value_states2, attention_mask, query_length
                )

                cu_seqlens_q, cu_seqlens_k = cu_seq_lens
                max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

                if not use_sliding_windows:
                    attn_output_unpad2 = flash_attn_varlen_func(
                        query_states2,
                        key_states2,
                        value_states2,
                        cu_seqlens_q=cu_seqlens_q,
                        cu_seqlens_k=cu_seqlens_k,
                        max_seqlen_q=max_seqlen_in_batch_q,
                        max_seqlen_k=max_seqlen_in_batch_k,
                        dropout_p=dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                    )
                else:
                    attn_output_unpad2 = flash_attn_varlen_func(
                        query_states2,
                        key_states2,
                        value_states2,
                        cu_seqlens_q=cu_seqlens_q,
                        cu_seqlens_k=cu_seqlens_k,
                        max_seqlen_q=max_seqlen_in_batch_q,
                        max_seqlen_k=max_seqlen_in_batch_k,
                        dropout_p=dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                        window_size=(self.config.sliding_window, self.config.sliding_window),
                    )

                attn_output2 = pad_input(attn_output_unpad2, indices_q, batch_size, query_length)

                attn_output = torch.cat([attn_output1, attn_output2], dim=-1)

            else:
                batch_size = query_states.shape[0]
                query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                    query_states, key_states, value_states, attention_mask, query_length
                )

                cu_seqlens_q, cu_seqlens_k = cu_seq_lens
                max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

                if not use_sliding_windows:
                    attn_output_unpad = flash_attn_varlen_func(
                        query_states,
                        key_states,
                        value_states,
                        cu_seqlens_q=cu_seqlens_q,
                        cu_seqlens_k=cu_seqlens_k,
                        max_seqlen_q=max_seqlen_in_batch_q,
                        max_seqlen_k=max_seqlen_in_batch_k,
                        dropout_p=dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                    )
                else:
                    attn_output_unpad = flash_attn_varlen_func(
                        query_states,
                        key_states,
                        value_states,
                        cu_seqlens_q=cu_seqlens_q,
                        cu_seqlens_k=cu_seqlens_k,
                        max_seqlen_q=max_seqlen_in_batch_q,
                        max_seqlen_k=max_seqlen_in_batch_k,
                        dropout_p=dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                        window_size=(self.config.sliding_window, self.config.sliding_window),
                    )

                attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
            if value_states.shape[-1] == query_states.shape[-1] * 2:
                if not use_sliding_windows:
                    attn_output1 = flash_attn_func(
                        query_states,
                        key_states,
                        value_states[...,:query_states.shape[-1]],
                        dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                    )

                    attn_output2 = flash_attn_func(
                        query_states,
                        key_states,
                        value_states[...,query_states.shape[-1]:],
                        dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                    )

                    attn_output = torch.cat([attn_output1, attn_output2], dim=-1)
                    
                else:
                    attn_output1 = flash_attn_func(
                        query_states,
                        key_states,
                        value_states[...,:query_states.shape[-1]],
                        dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                        window_size=(self.config.sliding_window, self.config.sliding_window),
                    )

                    attn_output2 = flash_attn_func(
                        query_states,
                        key_states,
                        value_states[...,query_states.shape[-1]:],
                        dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                        window_size=(self.config.sliding_window, self.config.sliding_window),
                    )

                    attn_output = torch.cat([attn_output1, attn_output2], dim=-1)

            else:
                if not use_sliding_windows:
                    attn_output = flash_attn_func(
                        query_states,
                        key_states,
                        value_states,
                        dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                    )
                else:
                    attn_output = flash_attn_func(
                        query_states,
                        key_states,
                        value_states,
                        dropout,
                        softmax_scale=softmax_scale,
                        causal=causal,
                        window_size=(self.config.sliding_window, self.config.sliding_window),
                    )

        return attn_output

    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
        
        # On the first iteration we need to properly re-create the padding mask
        # by slicing it on the proper place
        if kv_seq_len != attention_mask.shape[-1]:
            attention_mask_num_tokens = attention_mask.shape[-1]
            attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]

        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)

        key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
        value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)

        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )



# Adapted from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Hymba
class HymbaSdpaAttention(HymbaAttention):
    """
    Hymba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
    `HymbaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
    SDPA API.
    """

    # Adapted from HymbaAttention.forward
    def forward(
            self,
            hidden_states: torch.Tensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Cache] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
            kv_last_layer=None,
            # kv_proj_last_layer = None,
            use_swa=False,
            query_states = None,
            key_states=None,
            value_states=None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:

        if output_attentions:
            return super().forward(
                hidden_states=hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
                use_cache=use_cache,
            )
        
        if self.attn_only_wo_proj:
            assert query_states is not None
            bsz, q_len, _ = query_states.size()
        else:
            bsz, q_len, _ = hidden_states.size()

        if not self.attn_only_wo_proj:
            query_states = self.q_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.kq_head_dim).transpose(1, 2).contiguous()

        if self.q_norm is not None:
            query_states = self.q_norm(query_states)

        if self.config.rope:
            if self.attn_only_wo_proj:
                cos, sin = self.rotary_emb(query_states, position_ids)
            else:
                cos, sin = self.rotary_emb(hidden_states, position_ids)
            query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin)        

        if self.reuse_kv:
            assert kv_last_layer is not None
            key_states, value_states = kv_last_layer  # (batch, num_heads, slen, head_dim)
            
        else:
            if not self.attn_only_wo_proj:
                key_states = self.k_proj(hidden_states)
                value_states = self.v_proj(hidden_states)

            key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2)
            value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2)

            if self.k_norm is not None:
                key_states = self.k_norm(key_states)
            
            if self.config.rope:
                _, key_states = apply_rotary_pos_emb(None, key_states, cos, sin)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None and not self.reuse_kv and use_cache:
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
                
        key_states_no_repeat = key_states
        value_states_no_repeat = value_states

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
                )

        # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
        # Reference: https://github.com/pytorch/pytorch/issues/112577.
        if query_states.device.type == "cuda" and attention_mask is not None:
            query_states = query_states.contiguous()
            key_states = key_states.contiguous()
            value_states = value_states.contiguous()

        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=attention_mask,
            dropout_p=self.attention_dropout if self.training else 0.0,
            # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
            is_causal=self.is_causal and attention_mask is None and q_len > 1,
        )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, q_len, self.v_head_dim * self.num_heads)

        if self.attn_only_wo_proj:
            return attn_output, (key_states_no_repeat, value_states_no_repeat)
        
        attn_output = self.o_proj(attn_output)

        return attn_output, None, past_key_value, (key_states_no_repeat, value_states_no_repeat)




# Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Hymba
class HymbaFlexAttention(HymbaFlashAttention2):
    """
    Hymba flash attention module. This module inherits from `HymbaAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        assert self.config.num_memory_tokens > 0
        # assert self.config.sliding_window is not None

        from torch.nn.attention.flex_attention import flex_attention, create_block_mask, and_masks, or_masks
        from functools import partial

        self.create_block_mask = create_block_mask

        def sliding_window(b, h, q_idx, kv_idx):
            return q_idx - kv_idx <= self.config.sliding_window

        def causal_mask(b, h, q_idx, kv_idx):
            return q_idx >= kv_idx
                
        if self.config.sliding_window is not None and self.config.global_attn_idx is not None and self.layer_idx not in self.config.global_attn_idx:
            attn_mask = and_masks(causal_mask, sliding_window)
        else:
            attn_mask = causal_mask
        
        if self.config.memory_tokens_interspersed_every > 0:
            # !If see errors, note that deprecated n_ctx, using seq_length or max_position_embeddings instead
            num_memory_band = self.config.seq_length // self.config.memory_tokens_interspersed_every
            qk_length = self.config.seq_length + num_memory_band * self.config.num_memory_tokens
            num_tokens_per_band = qk_length // num_memory_band
            
            for i in range(num_memory_band):
                left_mask = lambda b, h, q_idx, kv_idx, i=i: kv_idx > i * num_tokens_per_band
                right_mask = lambda b, h, q_idx, kv_idx, i=i: kv_idx < i * num_tokens_per_band + self.config.num_memory_tokens

                band_mask = and_masks(left_mask, right_mask)

                if i == 0:
                    prefix_mask_interspersed = band_mask
                else:
                    prefix_mask_interspersed = or_masks(prefix_mask_interspersed, band_mask)

            register_mask = and_masks(causal_mask, prefix_mask_interspersed)
        else:
            def prefix_mask(b, h, q_idx, kv_idx):
                return kv_idx < self.config.num_memory_tokens
        
            register_mask = and_masks(causal_mask, prefix_mask)
            qk_length = self.config.seq_length + self.config.num_memory_tokens

        self.attn_mask = or_masks(attn_mask, register_mask)

        self.block_mask = create_block_mask(self.attn_mask, B=None, H=None, Q_LEN=qk_length, KV_LEN=qk_length)

        self.flex_attention = torch.compile(flex_attention)

    
    def recompile_flexattn(self):
        from torch.nn.attention.flex_attention import flex_attention
        self.flex_attention = torch.compile(flex_attention)


    def forward(
            self,
            hidden_states: torch.Tensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[Cache] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
            kv_last_layer=None,
            # kv_proj_last_layer = None,
            use_swa=False,
            query_states = None,
            key_states=None,
            value_states=None,
            **kwargs,
    ):  
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )

            attention_mask = kwargs.pop("padding_mask")

        if self.attn_only_wo_proj:
            assert query_states is not None
            bsz, q_len, _ = query_states.size()
        else:
            bsz, q_len, _ = hidden_states.size()

        if not self.attn_only_wo_proj:
            query_states = self.q_proj(hidden_states)

        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

        if self.q_norm is not None:
            query_states = self.q_norm(query_states)
            
        if self.config.rope:
            if self.attn_only_wo_proj:
                cos, sin = self.rotary_emb(query_states, position_ids)
            else:
                cos, sin = self.rotary_emb(hidden_states, position_ids)
            query_states, _ = apply_rotary_pos_emb(query_states, None, cos, sin)
        
        if self.reuse_kv:
            assert kv_last_layer is not None
            key_states, value_states = kv_last_layer  # (batch, num_heads, slen, head_dim)

        else:
            if not self.attn_only_wo_proj:
                key_states = self.k_proj(hidden_states)
                value_states = self.v_proj(hidden_states)

            key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.kq_head_dim).transpose(1, 2)
            value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.v_head_dim).transpose(1, 2)

            if self.k_norm is not None:
                key_states = self.k_norm(key_states)
            
            if self.config.rope:
                # cos, sin = self.rotary_emb(hidden_states, position_ids)
                _, key_states = apply_rotary_pos_emb(None, key_states, cos, sin)
        
        
        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None and not self.reuse_kv:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)

        use_sliding_windows = (
                _flash_supports_window_size
                and getattr(self.config, "sliding_window", None) is not None
                and kv_seq_len > (self.config.sliding_window + self.config.num_memory_tokens if self.config.num_memory_tokens > 0 else self.config.sliding_window)
                and use_swa
        )

        if not _flash_supports_window_size:
            logger.warning_once(
                "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
                " make sure to upgrade flash-attn library."
            )
                
        swa_processed_flag = False
        if past_key_value is not None and use_cache and not self.reuse_kv:
            kv_layer_idx = self.layer_idx

            cache_has_contents = past_key_value.get_seq_length(kv_layer_idx) > 0
            
            if (
                    getattr(self.config, "sliding_window", None) is not None
                    and kv_seq_len > (self.config.sliding_window + self.config.num_memory_tokens if self.config.num_memory_tokens > 0 else self.config.sliding_window)
                    and cache_has_contents
                    and use_swa
            ):              
                slicing_tokens = 1 - self.config.sliding_window

                past_key = past_key_value[kv_layer_idx][0]
                past_value = past_key_value[kv_layer_idx][1]
                
                if self.config.num_memory_tokens > 0:
                    # num_fetched_memory_tokens = min(kv_seq_len - self.config.sliding_window, self.config.num_memory_tokens)
                    num_fetched_memory_tokens = self.config.num_memory_tokens

                    past_key = torch.cat([past_key[:, :, :num_fetched_memory_tokens, :], past_key[:, :, slicing_tokens:, :]], dim=-2).contiguous()
                    past_value = torch.cat([past_value[:, :, :num_fetched_memory_tokens, :], past_value[:, :, slicing_tokens:, :]], dim=-2).contiguous()
                    
                else:
                    past_key = past_key[:, :, slicing_tokens:, :].contiguous()
                    past_value = past_value[:, :, slicing_tokens:, :].contiguous()

                ### only keep sliding_window tokens in kv cache: Removed as this will impact the kv_seq_len calculation, resulting in errors for all swa cases
                past_key_value.key_cache[kv_layer_idx] = past_key
                past_key_value.value_cache[kv_layer_idx] = past_value
                                                        
                if attention_mask is not None:
                    attention_mask = attention_mask[:, slicing_tokens:]
                    attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
                
                swa_processed_flag = True
                            
            key_states, value_states = past_key_value.update(key_states, value_states, kv_layer_idx)
            
            # print(key_states.shape, value_states.shape)
        else:
            cache_has_contents = False


        # repeat k/v heads if n_kv_heads < n_heads
        key_states_no_repeat = key_states
        value_states_no_repeat = value_states

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)
        dropout_rate = 0.0 if not self.training else self.attention_dropout

        input_dtype = query_states.dtype
        if input_dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)
        
        
        if past_key_value is not None and use_cache and (not use_swa or query_states.shape[-2] <= self.config.sliding_window):            
            query_states = query_states.transpose(1, 2)  # (batch, slen, num_heads, head_dim)
            key_states = key_states.transpose(1, 2)  # (batch, slen, num_heads, head_dim)
            value_states = value_states.transpose(1, 2)  # (batch, slen, num_heads, head_dim)
            
            attn_output = self._flash_attention_forward(
                query_states,
                key_states,
                value_states,
                attention_mask,
                q_len,
                dropout=dropout_rate,
                use_sliding_windows=use_sliding_windows and not swa_processed_flag,
            )

            v_dim = value_states.shape[-2] * value_states.shape[-1]
            attn_output = attn_output.reshape(bsz, q_len, v_dim).contiguous()
        
        else:
            if key_states.shape[-2] <= self.block_mask.shape[-2] - 128 or key_states.shape[-2] > self.block_mask.shape[-2]:
                block_mask = self.create_block_mask(self.attn_mask, B=None, H=None, Q_LEN=key_states.shape[-2], KV_LEN=key_states.shape[-2]) # , _compile=True)
            else:
                block_mask = self.block_mask
                
            if value_states.shape[-1] == query_states.shape[-1] * 2:
                attn_output1 = self.flex_attention(query_states, key_states, value_states[...,:query_states.shape[-1]], block_mask=block_mask)
                attn_output2 = self.flex_attention(query_states, key_states, value_states[...,query_states.shape[-1]:], block_mask=block_mask)

                attn_output = torch.cat([attn_output1, attn_output2], dim=-1)
            else:
                attn_output = self.flex_attention(query_states, key_states, value_states, block_mask=block_mask)

            attn_output = attn_output.transpose(1, 2).contiguous() ## [batch_size, seq_length, num_head, v_head_dim]
            
            if hasattr(self, 'head_mask') and self.head_mask is not None:
                head_mask = self.head_mask.to(attn_output)
                head_mask = head_mask.view(1, 1, -1, 1)
                attn_output = attn_output * head_mask
            
            attn_output = attn_output.reshape(bsz, q_len, self.v_head_dim * self.num_heads)
  
        if self.attn_only_wo_proj:
            return attn_output, (key_states_no_repeat, value_states_no_repeat)
        
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value, (key_states_no_repeat, value_states_no_repeat)

    def set_head_mask(self, mask):
        self.head_mask = mask


JAMBA_ATTENTION_CLASSES = {
    "eager": HymbaAttention,
    "flash_attention_2": HymbaFlashAttention2,
    "sdpa": HymbaSdpaAttention,  ## the default attention
    "flex": HymbaFlexAttention,
}


# Adapted from transformers.models.mamba.modeling_mamba.MambaMixer
class HymbaBlock(nn.Module):
    """
    Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
    A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
    ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
    and is why Mamba is called **selective** state spaces)
    """

    def __init__(self, config: HymbaConfig, layer_idx, reuse_kv=None):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.hidden_size = config.hidden_size
        self.ssm_state_size = config.mamba_d_state
        self.conv_kernel_size = config.mamba_d_conv

        self.intermediate_size = int(config.mamba_expand * config.hidden_size)

        self.reuse_kv = reuse_kv

        self.attn_hidden_size = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.num_key_value_heads = config.num_key_value_heads

        config.v_head_dim = self.intermediate_size // self.num_attention_heads

        self.k_hidden_size = int(self.num_key_value_heads/self.num_attention_heads * self.attn_hidden_size)
        self.v_hidden_size = int(self.num_key_value_heads/self.num_attention_heads * self.attn_hidden_size * config.mamba_expand)

        self.self_attn = JAMBA_ATTENTION_CLASSES[config.attn_implementation](config, layer_idx, attn_only_wo_proj=True, reuse_kv=reuse_kv)

        self.time_step_rank = config.mamba_dt_rank
        self.use_conv_bias = config.mamba_conv_bias
        self.use_bias = config.mamba_proj_bias

        self.activation = config.hidden_act
        self.act = ACT2FN[config.hidden_act]
        self.apply_inner_layernorms = config.mamba_inner_layernorms

        self.use_fast_kernels = True # config.use_mamba_kernels

        if self.reuse_kv:
            self.latent_dim = self.intermediate_size + self.attn_hidden_size  ## mamba plus q
        else:
            self.latent_dim = self.intermediate_size + self.attn_hidden_size + self.k_hidden_size + self.v_hidden_size  ## mamba plus qkv

        self.pre_avg_layernorm1 = HymbaRMSNorm(self.intermediate_size, eps=config.rms_norm_eps)
        self.pre_avg_layernorm2 = HymbaRMSNorm(self.intermediate_size, eps=config.rms_norm_eps)

        self.in_proj = nn.Linear(self.hidden_size, self.latent_dim + self.intermediate_size, bias=self.use_bias)
        self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)

        num_ssm_param = 1

        if not hasattr(config, 'conv_dim'):
            config.conv_dim = {str(i):0 for i in range(config.num_hidden_layers)}

        self.conv1d = nn.Conv1d(
            in_channels=self.intermediate_size,
            out_channels=self.intermediate_size,
            bias=self.use_conv_bias,
            kernel_size=self.conv_kernel_size,
            groups=self.intermediate_size,
            padding=self.conv_kernel_size - 1
            )

        config.conv_dim[str(self.layer_idx)] = self.intermediate_size

        self.x_proj = nn.ModuleList([nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False) for _ in range(num_ssm_param)])
        self.dt_proj = nn.ModuleList([nn.Linear(self.time_step_rank, self.intermediate_size, bias=True) for _ in range(num_ssm_param)])

        A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
        A = A.expand(self.intermediate_size, -1).contiguous()
        self.A_log = nn.ParameterList([nn.Parameter(torch.log(A)) for _ in range(num_ssm_param)])

        self.D = nn.ParameterList([nn.Parameter(torch.ones(self.intermediate_size)) for _ in range(num_ssm_param)])

        if self.apply_inner_layernorms:
            self.dt_layernorm = HymbaRMSNorm(self.time_step_rank, eps=config.rms_norm_eps)
            self.B_layernorm = HymbaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)
            self.C_layernorm = HymbaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps)

        else:
            self.dt_layernorm = None
            self.B_layernorm = None
            self.C_layernorm = None

        if not is_fast_path_available:
            logger.warning_once(
                "The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
                " is None. To install follow https://github.com/state-spaces/mamba/#installation and"
                " https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config"
            )

    def set_attn_mamba_mask(self, attn_branch_mask, mamba_branch_mask):
        self.attn_branch_mask = attn_branch_mask
        self.mamba_branch_mask = mamba_branch_mask
        
        
    def _apply_layernorms(self, dt, B, C):
        if self.dt_layernorm is not None:
            dt = self.dt_layernorm(dt)
        if self.B_layernorm is not None:
            B = self.B_layernorm(B)
        if self.C_layernorm is not None:
            C = self.C_layernorm(C)
        return dt, B, C

    def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: HybridMambaAttentionDynamicCache = None, attention_mask=None, position_ids=None, kv_last_layer=None, use_cache=False, use_swa=False):
        projected_states = self.in_proj(hidden_states).transpose(1, 2)  ## (bs, latent_dim, seq_len) 

        if (
                self.training and cache_params is None and not self.apply_inner_layernorms
        ):  # Doesn't support outputting the states -> used for training
            contextualized_states = mamba_inner_fn(
                projected_states,
                self.conv1d.weight,
                self.conv1d.bias if self.use_conv_bias else None,
                self.x_proj.weight,
                self.dt_proj.weight,
                self.out_proj.weight,
                self.out_proj.bias.float() if self.use_bias else None,
                -torch.exp(self.A_log.float()),
                None,  # input-dependent B
                None,  # input-dependent C
                self.D.float(),
                delta_bias=self.dt_proj.bias.float(),
                delta_softplus=True,
            )

        else:
            batch_size, seq_len, _ = hidden_states.shape
            use_precomputed_states = (
                cache_params is not None
                and cache_params.has_previous_state
                and seq_len == 1
                and cache_params.conv_states[self.layer_idx].shape[0]
                == cache_params.ssm_states[self.layer_idx].shape[0]
                == batch_size
                and use_cache
            )

            hidden_states, gate = projected_states.tensor_split((self.latent_dim,), dim=1)

            conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))

            if self.reuse_kv:
                query_states, hidden_states = hidden_states.tensor_split((self.attn_hidden_size,), dim=1)
                query_states = query_states.transpose(1,2)
            else:
                query_states, key_states, value_states, hidden_states = hidden_states.tensor_split((self.attn_hidden_size, self.attn_hidden_size + self.k_hidden_size, self.attn_hidden_size + self.k_hidden_size + self.v_hidden_size), dim=1)

                query_states = query_states.transpose(1,2)
                key_states = key_states.transpose(1,2)
                value_states = value_states.transpose(1,2)

            if use_precomputed_states:
                hidden_states = causal_conv1d_update(
                    hidden_states.squeeze(-1),
                    cache_params.conv_states[self.layer_idx],
                    conv_weights,
                    self.conv1d.bias,
                    self.activation,
                )
                hidden_states = hidden_states.unsqueeze(-1)

                cache_params.mamba_past_length[self.layer_idx] += seq_len
            else:
                if cache_params is not None:
                    conv_states = nn.functional.pad(
                        hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
                    )

                    cache_params.conv_states[self.layer_idx].copy_(conv_states)

                    cache_params.mamba_past_length[self.layer_idx] += seq_len
                
                hidden_states = causal_conv1d_fn(
                    hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
                )
            
            if self.reuse_kv:
                assert kv_last_layer is not None
                attn_outputs, attn_key_value = self.self_attn(attention_mask=attention_mask, position_ids=position_ids, query_states=query_states, kv_last_layer=kv_last_layer, use_swa=use_swa, use_cache=use_cache, past_key_value=cache_params)
            else:
                attn_outputs, attn_key_value = self.self_attn(attention_mask=attention_mask, position_ids=position_ids, query_states=query_states, key_states=key_states, value_states=value_states, use_swa=use_swa, use_cache=use_cache, past_key_value=cache_params)

            ## Mamba head
            index = 0
            ssm_parameters = self.x_proj[index](hidden_states.transpose(1, 2))
            time_step, B, C = torch.split(
                ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
            )
            time_step, B, C = self._apply_layernorms(time_step, B, C)

            if hasattr(self.dt_proj[index], "base_layer"):
                time_proj_bias = self.dt_proj[index].base_layer.bias
                self.dt_proj[index].base_layer.bias = None
            else:
                time_proj_bias = self.dt_proj[index].bias
                self.dt_proj[index].bias = None
            discrete_time_step = self.dt_proj[index](time_step).transpose(1, 2)  # [batch, intermediate_size, seq_len]

            if hasattr(self.dt_proj[index], "base_layer"):
                self.dt_proj[index].base_layer.bias = time_proj_bias
            else:
                self.dt_proj[index].bias = time_proj_bias

            A = -torch.exp(self.A_log[index].float())

            time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None
            if use_precomputed_states:
                scan_outputs = selective_state_update(
                    cache_params.ssm_states[self.layer_idx],
                    hidden_states[..., 0],
                    discrete_time_step[..., 0],
                    A,
                    B[:, 0],
                    C[:, 0],
                    self.D[index],
                    gate[..., 0],
                    time_proj_bias,
                    dt_softplus=True,
                ).unsqueeze(-1)
            else:
                outputs = selective_scan_fn(
                    hidden_states,
                    discrete_time_step,
                    A,
                    B.transpose(1, 2),
                    C.transpose(1, 2),
                    self.D[index].float(),
                    z=gate,
                    delta_bias=time_proj_bias,
                    delta_softplus=True,
                    return_last_state=True,
                )
                
                if len(outputs) == 3:
                    scan_outputs, ssm_state, _ = outputs
                else:
                    scan_outputs, ssm_state = outputs

                if ssm_state is not None and cache_params is not None:
                    cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
                    
            scan_outputs = scan_outputs.transpose(1, 2)

            hidden_states = (self.pre_avg_layernorm1(attn_outputs) + self.pre_avg_layernorm2(scan_outputs)) / 2
            contextualized_states = self.out_proj(hidden_states)

        return contextualized_states, attn_key_value


    def mixer_forward(self, hidden_states, cache_params: HybridMambaAttentionDynamicCache = None, attention_mask=None, position_ids=None, kv_last_layer=None, use_cache=False, use_swa=False):
        if self.use_fast_kernels:
            if not is_fast_path_available or "cuda" not in self.x_proj[0].weight.device.type:
            # if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type:
                raise ValueError(
                    "Fast Mamba kernels are not available. Make sure to they are installed and that the mamba module is on a CUDA device"
                )
            return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask=attention_mask, position_ids=position_ids, kv_last_layer=kv_last_layer, use_cache=use_cache, use_swa=use_swa)
        else:
            raise ValueError("Support Mamba kernel only")


    def forward(
            self,
            hidden_states: torch.Tensor,
            past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
            **kwargs,
    ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:

        res, attn_key_value = self.mixer_forward(hidden_states, cache_params=past_key_value, attention_mask=kwargs['attention_mask'], kv_last_layer=kwargs['kv_last_layer'], position_ids=kwargs['position_ids'], use_cache=kwargs['use_cache'], use_swa=kwargs['use_swa'])

        return res, attn_key_value, past_key_value
    
    

class HymbaMLP(nn.Module):
    def __init__(self, config: HymbaConfig):
        super().__init__()
        # self.config = config
        self.act_fn_name = config.mlp_hidden_act
        self.act_fn = ACT2FN[self.act_fn_name]
        self.ffn_dim = config.intermediate_size
        self.hidden_dim = config.hidden_size

        if self.act_fn_name == "silu":
            self.gate_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
        self.down_proj = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
        self.up_proj = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)


    def forward(self, x):
        if self.act_fn_name == "silu":
            return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
        elif self.act_fn_name == "relu2":
            return self.down_proj(self.act_fn(self.up_proj(x)))
        else:
            raise NotImplementedError(f"No such hidden_act: {self.act_fn_name}")
        

# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock with Mistral->Hymba
class HymbaSparseMoeBlock(nn.Module):
    """
    This implementation is
    strictly equivalent to standard MoE with full capacity (no
    dropped tokens). It's faster since it formulates MoE operations
    in terms of block-sparse operations to accomodate imbalanced
    assignments of tokens to experts, whereas standard MoE either
    (1) drop tokens at the cost of reduced performance or (2) set
    capacity factor to number of experts and thus waste computation
    and memory on padding.
    """

    def __init__(self, config: HymbaConfig, num_experts: int, num_experts_per_tok: int):
        super().__init__()
        self.hidden_dim = config.hidden_size
        self.ffn_dim = config.intermediate_size

        #   these values are decided on runtime depending on the layer index
        self.num_experts = num_experts
        self.top_k = num_experts_per_tok

        if num_experts > 1:
            # expert routing
            self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
        else:
            self.router = None

        self.experts = nn.ModuleList([HymbaMLP(config) for _ in range(self.num_experts)])

    def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """ """
        if len(hidden_states.shape) == 3:
            batch_size, sequence_length, hidden_dim = hidden_states.shape
            bs_times_seq_len = batch_size * sequence_length
        elif len(hidden_states.shape) == 2: 
            assert self.num_experts == 1
            bs_times_seq_len, hidden_dim = hidden_states.shape
        else:
            batch_size, sequence_length, _, hidden_dim = hidden_states.shape
            bs_times_seq_len = batch_size * sequence_length

        if self.num_experts == 1:
            # in this case we have a single MLP block and don't need to do any routing
            final_hidden_states = self.experts[0](hidden_states)
            router_logits = torch.ones(
                (bs_times_seq_len, 1),
                device=hidden_states.device,
                dtype=hidden_states.dtype,
                requires_grad=hidden_states.requires_grad,
            )
            return final_hidden_states, router_logits

        # in this case we have multiple experts and need to do routing
        hidden_states = hidden_states.view(-1, hidden_dim)
        # router_logits: (batch * sequence_length, n_experts)
        router_logits = self.router(hidden_states)
        routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
        routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
        # we cast back to the input dtype
        routing_weights = routing_weights.to(hidden_states.dtype)

        final_hidden_states = torch.zeros(
            (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
        )

        # One hot encode the selected experts to create an expert mask
        # this will be used to easily index which expert is going to be sollicitated
        expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)

        # Loop over all available experts in the model and perform the computation on each expert
        for expert_idx in range(self.num_experts):
            expert_layer = self.experts[expert_idx]
            idx, top_x = torch.where(expert_mask[expert_idx])

            if top_x.shape[0] == 0:
                continue

            # in torch it is faster to index using lists than torch tensors
            top_x_list = top_x.tolist()
            idx_list = idx.tolist()

            # Index the correct hidden states and compute the expert hidden state for
            # the current expert. We need to make sure to multiply the output hidden
            # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
            current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
            current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]

            # However `index_add_` only support torch tensors for indexing so we'll use
            # the `top_x` tensor here.
            final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
        final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
        return final_hidden_states, router_logits
    


class HymbaDecoderLayer(nn.Module):
    def __init__(self, config: HymbaConfig, num_experts: int, layer_idx: int, reuse_kv: bool = False):
        super().__init__()

        self.config = config
        self.layer_idx = layer_idx
        self.reuse_kv = reuse_kv
        
        self.mamba = HymbaBlock(config=config, layer_idx=layer_idx, reuse_kv=reuse_kv)
        
        self.input_layernorm = HymbaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        self.intermediate_size = config.intermediate_size
        if self.intermediate_size > 0:
            num_experts_per_tok = config.num_experts_per_tok if num_experts > 1 else 1

            self.moe = HymbaSparseMoeBlock(config, num_experts=num_experts, num_experts_per_tok=num_experts_per_tok)

            self.pre_moe_layernorm = HymbaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)


    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            attention_mask_raw: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
            output_attentions: Optional[bool] = False,
            output_router_logits: Optional[bool] = False,
            use_cache: Optional[bool] = False,
            kv_last_layer = None,
            use_swa=False,
            **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        if "padding_mask" in kwargs:
            warnings.warn(
                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
            )
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
                `(batch, sequence_length)` where padding elements are indicated by 0.
            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_router_logits (`bool`, *optional*):
                Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
                should not be returned during inference.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
        """

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        hidden_states, attn_key_value, present_key_value = self.mamba(
            hidden_states=hidden_states,
            past_key_value=past_key_value,
            attention_mask=attention_mask,
            position_ids=position_ids,
            kv_last_layer=kv_last_layer,
            use_cache=use_cache,
            use_swa=use_swa
        )

        bs, seqlen, _ = hidden_states.shape
        past_seqlen = self._get_past_seqlen(past_key_value, seqlen)
        num_attention_heads = self.mamba.config.num_attention_heads
        self_attn_weights = torch.empty(bs, num_attention_heads, seqlen, past_seqlen, device="meta")

        # residual connection after mamba
        hidden_states = residual + hidden_states

        if self.intermediate_size > 0:
            residual = hidden_states
            hidden_states = self.pre_moe_layernorm(hidden_states)
            hidden_states, router_logits = self.moe(hidden_states)
            hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        if output_router_logits:
            outputs += (router_logits,)
        
        outputs += (attn_key_value,)

        return outputs

    def _get_past_seqlen(self, past_key_value, seqlen):
        if past_key_value is None:
            return seqlen
        past_seqlen = past_key_value.get_seq_length()

        if past_seqlen == 0:
            return seqlen

        return past_seqlen
    


class HymbaPreTrainedModel(PreTrainedModel):
    config_class = HymbaConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["HymbaDecoderLayer"]
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @staticmethod
    def _convert_to_standard_cache(
            past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
        """
        Standardizes the format of the cache so as to match most implementations, i.e. have the seqlen as the third dim
        also for mamba layers
        """
        attn_layer_index = [k.shape == v.shape for k, v in past_key_value].index(True)
        seqlen = past_key_value[attn_layer_index][0].shape[2]
        standard_past_key_value = ()
        for k, v in past_key_value:
            if k.shape != v.shape:
                # mamba layer
                # expand doesn't use more memory, so it's fine to do it here
                standard_past_key_value += ((k.expand(-1, -1, seqlen, -1), v.expand(-1, -1, seqlen, -1)),)
            else:
                standard_past_key_value += ((k, v),)
        return standard_past_key_value

    @staticmethod
    def _convert_to_hymba_cache(
            past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
    ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
        """
        Converts the cache to the format expected by Hymba, i.e. dummy seqlen dimesion with size 1 for mamba layers
        """
        hymba_past_key_value = ()
        for k, v in past_key_value:
            if k.shape != v.shape:
                # mamba layer
                hymba_past_key_value += ((k[:, :, :1, :], v[:, :, :1, :]),)
            else:
                hymba_past_key_value += ((k, v),)
        return hymba_past_key_value



HYMBA_INPUTS_DOCSTRING = r"""
    Args: To be added later. Please refer to the forward function.
"""


# Adapted from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->JAMBA, Mistral->Hymba
class HymbaModel(HymbaPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`HymbaDecoderLayer`]

    Args:
        config: HymbaConfig
    """

    def __init__(self, config: HymbaConfig):
        super().__init__(config)
        config.attn_implementation = config.attn_implementation_new
        config._attn_implementation = config.attn_implementation_new

        self.config = config
        
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)

        self.inter_layer_kv_reuse = config.kv_reuse_every_i_layer > 0 or config.kv_reuse_group is not None
        self.kv_reuse_group = config.kv_reuse_group
        self.kv_reuse_every_i_layer = config.kv_reuse_every_i_layer

        decoder_layers = []
        
        if self.kv_reuse_group is not None:
            self.kv_reuse_group = [{'producer': group[0], 'consumer': group[1:]} for group in self.kv_reuse_group]

        layer_type = []
        for i in range(config.num_hidden_layers):
            if self.inter_layer_kv_reuse:
                if self.kv_reuse_group is not None:
                    reuse_kv = False
                    for group_id, item in enumerate(self.kv_reuse_group):
                        if i in item['consumer']:
                            reuse_kv = True

                else:
                    if i % config.kv_reuse_every_i_layer == 0:
                        reuse_kv = False
                    else:
                        reuse_kv = True
            else:
                reuse_kv = False
            
            layer_type.append('h')
            decoder_layer = HymbaDecoderLayer(config, num_experts=1, layer_idx=i, reuse_kv=reuse_kv)

            decoder_layers.append(decoder_layer)
            
        config.layer_type = layer_type
        
        if config.sliding_window is not None:
            self.sliding_window = config.sliding_window
            self.global_attn_idx = config.global_attn_idx
        else:
            self.sliding_window = None
            self.global_attn_idx = None

        self._attn_layer_index = []
        self._hymba_layer_index = [isinstance(layer, HymbaDecoderLayer) for layer in decoder_layers].index(True)

        self.layers = nn.ModuleList(decoder_layers)

        self._attn_implementation = config.attn_implementation
        self.final_layernorm = HymbaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        if self.config.num_memory_tokens > 0:
            self.memory_tokens = nn.Parameter(torch.randn(self.config.num_memory_tokens, self.config.hidden_size))
        self.gradient_checkpointing = False

        self.post_init()

    # Ignore copy
    @add_start_docstrings_to_model_forward(HYMBA_INPUTS_DOCSTRING)
    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[Union[List[torch.FloatTensor], HybridMambaAttentionDynamicCache]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            output_router_logits: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, MoeModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        past_key_values_length = 0

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        if use_cache:
            use_legacy_cache = False
            # past_key_values_length = past_key_values.get_usable_length(seq_length, self._attn_layer_index)
            if past_key_values is not None:
                past_key_values_length = past_key_values.get_usable_length(seq_length, 0)
            else:
                use_cache = False

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            if self.config.num_memory_tokens > 0 and past_key_values is not None and past_key_values.get_seq_length() == 0:
                position_ids = position_ids.view(-1, seq_length + self.config.num_memory_tokens).long()
            else:
                position_ids = position_ids.view(-1, seq_length).long()

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if self.config.num_memory_tokens > 0 and (past_key_values is None or past_key_values.get_seq_length() == 0):
            ori_b, ori_n = inputs_embeds.shape[0], inputs_embeds.shape[1]
            
            if self.config.memory_tokens_interspersed_every > 0:
                mem_every = self.config.memory_tokens_interspersed_every
                next_seq_len = math.ceil(ori_n / mem_every) * mem_every

                # print(f"before padding: {inputs_embeds.shape}")
                inputs_embeds = pad_at_dim(inputs_embeds, (0, next_seq_len - ori_n), dim = -2, value = 0.)
                # print(f"after padding: {inputs_embeds.shape}")
                inputs_embeds = rearrange(inputs_embeds, 'b (n m) d -> (b n) m d', m = mem_every) # m is the segment length

            mem = repeat(self.memory_tokens, 'n d -> b n d', b = inputs_embeds.shape[0]) # prepend the memory to every segment of m by repeating the memory tokens
            inputs_embeds, mem_packed_shape = pack((mem, inputs_embeds), 'b * d')      

            if self.config.memory_tokens_interspersed_every > 0:
                inputs_embeds = rearrange(inputs_embeds, '(b n) m d -> b (n m) d', b = ori_b)
            
            if position_ids is not None and position_ids.shape[1] != inputs_embeds.shape[1]:
                position_ids = torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0)
        
        attention_mask_raw = attention_mask

        if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
            is_padding_right = attention_mask[:, -1].sum().item() != batch_size
            if is_padding_right:
                raise ValueError(
                    "You are attempting to perform batched generation with padding_side='right'"
                    " this may lead to unexpected behaviour for Flash Attention version of Hymba. Make sure to "
                    " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
                )
                
        if self._attn_implementation == "flash_attention_2" or self._attn_implementation == "flex":
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
            attention_mask_swa = attention_mask
            
        elif self._attn_implementation == "sdpa" and not output_attentions:
            attention_mask_input = attention_mask

            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
            )

            if self.sliding_window is not None:
                attention_mask_swa = _prepare_4d_causal_attention_mask_for_sdpa(
                    attention_mask_input,
                    (batch_size, seq_length),
                    inputs_embeds,
                    past_key_values_length,
                    sliding_window=self.sliding_window
                )

        else:

            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
            )
            

            if self.sliding_window is not None:
                attention_mask_swa = _prepare_4d_causal_attention_mask(
                    attention_mask_input,
                    (batch_size, seq_length),
                    inputs_embeds,
                    past_key_values_length,
                    sliding_window=self.sliding_window
                )

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_router_logits = () if output_router_logits else None
        next_decoder_cache = None

        kv_last_layer = None

        shared_kv_cache_dict = {}

        for i, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            
            if self.inter_layer_kv_reuse and self.kv_reuse_group is not None:
                no_reuse_flag = True
                for group_id, item in enumerate(self.kv_reuse_group):
                    if i in item['consumer']:
                        kv_last_layer = shared_kv_cache_dict[group_id]
                        no_reuse_flag = False
                        # print(f'[Layer-{i}]: Reuse KV cache from Layer-{self.kv_reuse_group[group_id]["producer"]}')
                        break
                
                if no_reuse_flag:
                    kv_last_layer = None

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask if (self.sliding_window is None or i in self.global_attn_idx) else attention_mask_swa,
                    attention_mask_raw,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    output_router_logits,
                    use_cache,
                    kv_last_layer,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask if (self.sliding_window is None or i in self.global_attn_idx) else attention_mask_swa,
                    attention_mask_raw=attention_mask_raw,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    output_router_logits=output_router_logits,
                    use_cache=use_cache,
                    kv_last_layer=kv_last_layer if self.inter_layer_kv_reuse else None,
                    use_swa=self.sliding_window is not None and i not in self.global_attn_idx,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

            if output_router_logits:
                all_router_logits += (layer_outputs[3],)

            if self.inter_layer_kv_reuse:
                kv_last_layer = layer_outputs[-1]

                if self.kv_reuse_group is not None:
                    for group_id, item in enumerate(self.kv_reuse_group):
                        if i == item['producer']:
                            shared_kv_cache_dict[group_id] = kv_last_layer
                            break
        
        del shared_kv_cache_dict

        hidden_states = self.final_layernorm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if self.config.num_memory_tokens > 0 and (past_key_values is None or past_key_values.get_seq_length() == 0):
            if self.config.memory_tokens_interspersed_every > 0:
                hidden_states = rearrange(hidden_states, 'b (n m) d -> (b n) m d', m = (self.config.num_memory_tokens + self.config.memory_tokens_interspersed_every))

            mem, hidden_states = unpack(hidden_states, mem_packed_shape, 'b * d')

            if self.config.memory_tokens_interspersed_every > 0:
                hidden_states = rearrange(hidden_states, '(b n) m d -> b (n m) d', b = ori_b)

            hidden_states = hidden_states[:, :ori_n, :]

        if past_key_values and not past_key_values.has_previous_state:
            past_key_values.has_previous_state = True

        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
                if v is not None
            )
        return MoeModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            router_logits=all_router_logits,
        )




# Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->Hymba
class HymbaForCausalLM(HymbaPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: HymbaConfig):
        super().__init__(config)
        self.config = config
        self.model = HymbaModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.router_aux_loss_coef = config.router_aux_loss_coef
        self.num_experts = config.num_experts
        self.num_experts_per_tok = config.num_experts_per_tok
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model
    
    @add_start_docstrings_to_model_forward(HYMBA_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            output_router_logits: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            calc_logits_for_entire_prompt: Optional[bool] = True,
    ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
                
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

            calc_logits_for_entire_prompt (`bool`, *optional*):
                Whether or not to calculate the logits for the entire prompt, or just the last token. Only last token
                logits are needed for generation, and calculating them only for that token can save memory,
                which becomes pretty significant for long sequences.

        Returns:
        ```"""

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_router_logits = (
            output_router_logits if output_router_logits is not None else self.config.output_router_logits
        )

        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_router_logits=output_router_logits,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        if calc_logits_for_entire_prompt:
            logits = self.lm_head(hidden_states)
        else:
            logits = self.lm_head(hidden_states[..., -1:, :])
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        aux_loss = None
        if output_router_logits:
            aux_loss = load_balancing_loss_func(
                outputs.router_logits if return_dict else outputs[-1],
                self.num_experts,
                self.num_experts_per_tok,
                attention_mask,
            )
            if labels is not None:
                loss += self.router_aux_loss_coef * aux_loss.to(loss.device)  # make sure to reside in the same device

        if not return_dict:
            output = (logits,) + outputs[1:]
            if output_router_logits:
                output = (aux_loss,) + output
            return (loss,) + output if loss is not None else output

        # print("hidden_states.shape:", hidden_states.shape, "input_ids.shape:", input_ids.shape, "logits.shape:", logits.shape)

        return MoeCausalLMOutputWithPast(
            loss=loss,
            aux_loss=aux_loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_logits=outputs.router_logits,
        )

    def prepare_inputs_for_generation(
            self,
            input_ids,
            past_key_values=None,
            attention_mask=None,
            inputs_embeds=None,
            output_router_logits=False,
            **kwargs,
    ):         
        if self.config.num_memory_tokens > 0:
            attention_mask = torch.cat([torch.ones(input_ids.shape[0], self.config.num_memory_tokens, device=attention_mask.device), attention_mask], dim=1)

        if past_key_values is not None and past_key_values.get_seq_length() > 0:
            if isinstance(past_key_values, Tuple):
                if past_key_values[self.model._hymba_layer_index][0].shape[2] > 1:
                    past_key_values = self._convert_to_hymba_cache(past_key_values)

            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
                max_cache_length = past_key_values.get_max_length()

                past_length = cache_length

            else:
                cache_length = past_length = past_key_values[self.model._attn_layer_index][0].shape[2]
                max_cache_length = None

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)

            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]

            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif self.config.num_memory_tokens <= 0 and past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
                
            elif self.config.num_memory_tokens > 0 and past_length < input_ids.shape[1] + self.config.num_memory_tokens:
                new_query_id = past_length - self.config.num_memory_tokens
                input_ids = input_ids[:, new_query_id:]

            if self.config.sliding_window is not None and (self.config.global_attn_idx is None or len(self.config.global_attn_idx) == 0):
                input_ids = input_ids[:, -1:]
                    
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.

            # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
            if (
                    max_cache_length is not None
                    and attention_mask is not None
                    and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]
        else:
            past_key_values = HybridMambaAttentionDynamicCache(
                self.config, input_ids.shape[0], self.dtype, device=self.device, layer_type=self.config.layer_type
            )

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values.get_seq_length() > 0:
                position_ids = position_ids[:, -input_ids.shape[1] :]
                
        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "output_router_logits": output_router_logits,
                "calc_logits_for_entire_prompt": self.config.calc_logits_for_entire_prompt,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
            )
        return reordered_past