flash_attention_utils_backward_compat (#2)
Browse files- flash_attention_utils_backward_compat (a9c47229964d0d7b30c4c544351fb96760ad63bf)
modeling_decilm.py
CHANGED
@@ -35,12 +35,12 @@ from transformers.utils import (
|
|
35 |
replace_return_docstrings,
|
36 |
)
|
37 |
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
38 |
-
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
39 |
|
40 |
from .configuration_decilm import DeciLMConfig, AttentionConfig, FFNConfig
|
41 |
from .transformers_4_44_2__activations import ACT2FN
|
42 |
from .transformers_4_44_2__cache_utils import Cache, StaticCache
|
43 |
from .transformers_4_44_2__modeling_attn_mask_utils import AttentionMaskConverter
|
|
|
44 |
from .transformers_4_44_2__modeling_outputs import (
|
45 |
BaseModelOutputWithPast,
|
46 |
CausalLMOutputWithPast,
|
@@ -1664,3 +1664,4 @@ class DeciLMLinearAttention(nn.Module):
|
|
1664 |
|
1665 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1666 |
return self.linear_attn.forward(x)
|
|
|
|
35 |
replace_return_docstrings,
|
36 |
)
|
37 |
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
|
|
38 |
|
39 |
from .configuration_decilm import DeciLMConfig, AttentionConfig, FFNConfig
|
40 |
from .transformers_4_44_2__activations import ACT2FN
|
41 |
from .transformers_4_44_2__cache_utils import Cache, StaticCache
|
42 |
from .transformers_4_44_2__modeling_attn_mask_utils import AttentionMaskConverter
|
43 |
+
from .transformers_4_44_2__modeling_flash_attention_utils_backward_compat import _flash_attention_forward
|
44 |
from .transformers_4_44_2__modeling_outputs import (
|
45 |
BaseModelOutputWithPast,
|
46 |
CausalLMOutputWithPast,
|
|
|
1664 |
|
1665 |
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1666 |
return self.linear_attn.forward(x)
|
1667 |
+
|
transformers_4_44_2__modeling_flash_attention_utils_backward_compat.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import inspect
|
17 |
+
import os
|
18 |
+
from typing import Optional, Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn.functional as F
|
22 |
+
|
23 |
+
from transformers.utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal
|
24 |
+
|
25 |
+
|
26 |
+
if is_flash_attn_2_available():
|
27 |
+
try:
|
28 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
29 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
30 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
31 |
+
except ImportError:
|
32 |
+
raise "Unable to import flash_attn"
|
33 |
+
|
34 |
+
|
35 |
+
def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
36 |
+
"""
|
37 |
+
Retrieves indexing data required to repad unpadded (ragged) tensors.
|
38 |
+
|
39 |
+
Arguments:
|
40 |
+
attention_mask (`torch.Tensor`):
|
41 |
+
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
|
42 |
+
|
43 |
+
Return:
|
44 |
+
indices (`torch.Tensor`):
|
45 |
+
The indices of non-masked tokens from the flattened input sequence.
|
46 |
+
cu_seqlens (`torch.Tensor`):
|
47 |
+
The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
|
48 |
+
max_seqlen_in_batch (`int`):
|
49 |
+
Maximum sequence length in batch.
|
50 |
+
"""
|
51 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
52 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
53 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
54 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
55 |
+
return (
|
56 |
+
indices,
|
57 |
+
cu_seqlens,
|
58 |
+
max_seqlen_in_batch,
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
def _upad_input(
|
63 |
+
query_layer: torch.Tensor,
|
64 |
+
key_layer: torch.Tensor,
|
65 |
+
value_layer: torch.Tensor,
|
66 |
+
attention_mask: torch.Tensor,
|
67 |
+
query_length: int,
|
68 |
+
):
|
69 |
+
"""
|
70 |
+
Unpads query, key, and values tensors, using a single dimension for all tokens even though they belong to different batches.
|
71 |
+
|
72 |
+
This function is used instead of `flash_attn.bert_padding.unpad_input` in order to avoid the recomputation of the same intermediary
|
73 |
+
tensors for query, key, value tensors.
|
74 |
+
|
75 |
+
Arguments:
|
76 |
+
query_layer (`torch.Tensor`):
|
77 |
+
Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
|
78 |
+
key_layer (`torch.Tensor`):
|
79 |
+
Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
80 |
+
value_layer (`torch.Tensor`):
|
81 |
+
Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
82 |
+
attention_mask (`torch.Tensor`):
|
83 |
+
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
|
84 |
+
query_length (`int`):
|
85 |
+
Target length.
|
86 |
+
|
87 |
+
Return:
|
88 |
+
query_layer (`torch.Tensor`):
|
89 |
+
Query state without padding. Shape: (total_target_length, num_heads, head_dim).
|
90 |
+
key_layer (`torch.Tensor`):
|
91 |
+
Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
92 |
+
value_layer (`torch.Tensor`):
|
93 |
+
Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
94 |
+
indices_q (`torch.Tensor`):
|
95 |
+
The indices of non-masked tokens from the flattened input target sequence.
|
96 |
+
(cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
|
97 |
+
The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
|
98 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
|
99 |
+
Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
|
100 |
+
"""
|
101 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
102 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
103 |
+
|
104 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k)
|
105 |
+
value_layer = index_first_axis(
|
106 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
107 |
+
)
|
108 |
+
if query_length == kv_seq_len:
|
109 |
+
query_layer = index_first_axis(query_layer.reshape(batch_size * kv_seq_len, -1, head_dim), indices_k)
|
110 |
+
cu_seqlens_q = cu_seqlens_k
|
111 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
112 |
+
indices_q = indices_k
|
113 |
+
elif query_length == 1:
|
114 |
+
max_seqlen_in_batch_q = 1
|
115 |
+
cu_seqlens_q = torch.arange(
|
116 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
117 |
+
) # There is a memcpy here, that is very bad.
|
118 |
+
indices_q = cu_seqlens_q[:-1]
|
119 |
+
query_layer = query_layer.squeeze(1)
|
120 |
+
else:
|
121 |
+
# The -q_len: slice assumes left padding.
|
122 |
+
attention_mask = attention_mask[:, -query_length:]
|
123 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
124 |
+
|
125 |
+
return (
|
126 |
+
query_layer,
|
127 |
+
key_layer,
|
128 |
+
value_layer,
|
129 |
+
indices_q,
|
130 |
+
(cu_seqlens_q, cu_seqlens_k),
|
131 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
132 |
+
)
|
133 |
+
|
134 |
+
|
135 |
+
def prepare_fa2_from_position_ids(query, key, value, position_ids):
|
136 |
+
"""
|
137 |
+
This function returns necessary arguments to call `flash_attn_varlen_func`.
|
138 |
+
All three query, key, value states will be flattened.
|
139 |
+
Cummulative lengths of each examples in the batch will be extracted from position_ids.
|
140 |
+
|
141 |
+
NOTE: ideally cummulative lengths should be prepared at the data collator stage
|
142 |
+
|
143 |
+
Arguments:
|
144 |
+
query (`torch.Tensor`):
|
145 |
+
Query state with padding. Shape: (batch_size, query_length, num_heads, head_dim).
|
146 |
+
key (`torch.Tensor`):
|
147 |
+
Key state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
148 |
+
value (`torch.Tensor`):
|
149 |
+
Value state with padding. Shape: (batch_size, kv_seq_len, num_key_value_heads, head_dim).
|
150 |
+
position_ids (`torch.Tensor`):
|
151 |
+
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
|
152 |
+
|
153 |
+
Return:
|
154 |
+
query (`torch.Tensor`):
|
155 |
+
Query state without padding. Shape: (total_target_length, num_heads, head_dim).
|
156 |
+
key (`torch.Tensor`):
|
157 |
+
Key state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
158 |
+
value (`torch.Tensor`):
|
159 |
+
Value state with padding. Shape: (total_source_length, num_key_value_heads, head_dim).
|
160 |
+
indices_q (`torch.Tensor`):
|
161 |
+
The indices of non-masked tokens from the flattened input target sequence.
|
162 |
+
(cu_seqlens_q, cu_seqlens_k) (`Tuple[int]`):
|
163 |
+
The cumulative sequence lengths for the target (query) and source (key, value), used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
|
164 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k) (`Tuple[int]`):
|
165 |
+
Maximum sequence length in batch (`max_seqlen_in_batch_q` for the target sequence i.e. query, `max_seqlen_in_batch_k` for the source sequence i.e. key/value).
|
166 |
+
"""
|
167 |
+
query = query.view(-1, query.size(-2), query.size(-1))
|
168 |
+
key = key.view(-1, key.size(-2), key.size(-1))
|
169 |
+
value = value.view(-1, value.size(-2), value.size(-1))
|
170 |
+
position_ids = position_ids.flatten()
|
171 |
+
indices_q = torch.arange(position_ids.size(0), device=position_ids.device, dtype=torch.int32)
|
172 |
+
|
173 |
+
cu_seq_lens = torch.cat(
|
174 |
+
(
|
175 |
+
indices_q[position_ids == 0],
|
176 |
+
torch.tensor(position_ids.size(), device=position_ids.device, dtype=torch.int32),
|
177 |
+
)
|
178 |
+
)
|
179 |
+
|
180 |
+
max_length = position_ids.max() + 1
|
181 |
+
|
182 |
+
return (query, key, value, indices_q, (cu_seq_lens, cu_seq_lens), (max_length, max_length))
|
183 |
+
|
184 |
+
|
185 |
+
def _flash_attention_forward(
|
186 |
+
query_states: torch.Tensor,
|
187 |
+
key_states: torch.Tensor,
|
188 |
+
value_states: torch.Tensor,
|
189 |
+
attention_mask: torch.Tensor,
|
190 |
+
query_length: int,
|
191 |
+
is_causal: bool,
|
192 |
+
dropout: float = 0.0,
|
193 |
+
position_ids: Optional[torch.Tensor] = None,
|
194 |
+
softmax_scale: Optional[float] = None,
|
195 |
+
sliding_window: Optional[int] = None,
|
196 |
+
use_top_left_mask: bool = False,
|
197 |
+
softcap: Optional[float] = None,
|
198 |
+
deterministic: bool = None,
|
199 |
+
):
|
200 |
+
"""
|
201 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
202 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
203 |
+
|
204 |
+
Args:
|
205 |
+
query_states (`torch.Tensor`):
|
206 |
+
Input query states to be passed to Flash Attention API
|
207 |
+
key_states (`torch.Tensor`):
|
208 |
+
Input key states to be passed to Flash Attention API
|
209 |
+
value_states (`torch.Tensor`):
|
210 |
+
Input value states to be passed to Flash Attention API
|
211 |
+
attention_mask (`torch.Tensor`):
|
212 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
213 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
214 |
+
dropout (`float`):
|
215 |
+
Attention dropout
|
216 |
+
softmax_scale (`float`, *optional*):
|
217 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
218 |
+
use_top_left_mask (`bool`, defaults to `False`):
|
219 |
+
flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
|
220 |
+
softcap (`float`, *optional*):
|
221 |
+
Softcap for the attention logits, used e.g. in gemma2.
|
222 |
+
deterministic (`bool`, *optional*):
|
223 |
+
Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled.
|
224 |
+
"""
|
225 |
+
if not use_top_left_mask:
|
226 |
+
causal = is_causal
|
227 |
+
else:
|
228 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__.
|
229 |
+
causal = is_causal and query_length != 1
|
230 |
+
|
231 |
+
# Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length).
|
232 |
+
use_sliding_windows = (
|
233 |
+
_flash_supports_window_size and sliding_window is not None and key_states.shape[1] > sliding_window
|
234 |
+
)
|
235 |
+
flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {}
|
236 |
+
|
237 |
+
if is_flash_attn_greater_or_equal("2.4.1"):
|
238 |
+
if deterministic is None:
|
239 |
+
deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1"
|
240 |
+
flash_kwargs["deterministic"] = deterministic
|
241 |
+
|
242 |
+
if softcap is not None:
|
243 |
+
flash_kwargs["softcap"] = softcap
|
244 |
+
|
245 |
+
# Contains at least one padding token in the sequence
|
246 |
+
if attention_mask is not None:
|
247 |
+
batch_size = query_states.shape[0]
|
248 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input(
|
249 |
+
query_states, key_states, value_states, attention_mask, query_length
|
250 |
+
)
|
251 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
252 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
253 |
+
|
254 |
+
attn_output_unpad = flash_attn_varlen_func(
|
255 |
+
query_states,
|
256 |
+
key_states,
|
257 |
+
value_states,
|
258 |
+
cu_seqlens_q=cu_seqlens_q,
|
259 |
+
cu_seqlens_k=cu_seqlens_k,
|
260 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
261 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
262 |
+
dropout_p=dropout,
|
263 |
+
softmax_scale=softmax_scale,
|
264 |
+
causal=causal,
|
265 |
+
**flash_kwargs,
|
266 |
+
)
|
267 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
268 |
+
|
269 |
+
# If position_ids is provided and check all examples do not contain only 1 sequence, If tensor in increasing
|
270 |
+
# then we probably have one sequence, otherwise it is packed. Additionally check we are in pre-fill/training stage.
|
271 |
+
# Use `flash_attn_varlen_func` to prevent cross-example attention and also allow padding free approach
|
272 |
+
elif position_ids is not None and not (torch.diff(position_ids, dim=-1) >= 0).all() and query_length != 1:
|
273 |
+
batch_size = query_states.size(0)
|
274 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = prepare_fa2_from_position_ids(
|
275 |
+
query_states, key_states, value_states, position_ids
|
276 |
+
)
|
277 |
+
|
278 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
279 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
280 |
+
|
281 |
+
attn_output = flash_attn_varlen_func(
|
282 |
+
query_states,
|
283 |
+
key_states,
|
284 |
+
value_states,
|
285 |
+
cu_seqlens_q=cu_seqlens_q,
|
286 |
+
cu_seqlens_k=cu_seqlens_k,
|
287 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
288 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
289 |
+
dropout_p=dropout,
|
290 |
+
softmax_scale=softmax_scale,
|
291 |
+
causal=causal,
|
292 |
+
**flash_kwargs,
|
293 |
+
)
|
294 |
+
|
295 |
+
attn_output = attn_output.view(batch_size, -1, attn_output.size(-2), attn_output.size(-1))
|
296 |
+
|
297 |
+
else:
|
298 |
+
attn_output = flash_attn_func(
|
299 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, **flash_kwargs
|
300 |
+
)
|
301 |
+
|
302 |
+
return attn_output
|