NeMo
English
nvidia
steerlm
llama3
reward model
File size: 7,907 Bytes
750e3e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b86ede9
750e3e6
 
 
 
 
 
 
 
 
07fd6af
750e3e6
e686a25
750e3e6
 
c1f346b
750e3e6
2992f66
2a39d2e
e9440c9
 
750e3e6
2a39d2e
750e3e6
b86ede9
750e3e6
b86ede9
 
750e3e6
2992f66
750e3e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
license: llama3
library_name: nemo
language:
- en
inference: false
fine-tuning: false
tags:
- nvidia
- steerlm
- llama3
- reward model
datasets:
- nvidia/HelpSteer2
---

# Llama3-70B-SteerLM-RM 

## License
The use of this model is governed by the [Llama 3 Community License Agreement](https://github.com/meta-llama/llama3/blob/main/LICENSE)

## Description:
Llama3-70B-SteerLM-RM is a 70 billion parameter language model (with context of up to 8,192 tokens) used as an Attribute Prediction Model,  a multi-aspect Reward Model that rates model responses on various aspects that makes a response desirable instead of a singular score in a conventional Reward Model.

Given a conversation with multiple turns between user and assistant, it rates the following attributes (between 0 and 4) for every assistant turn.

1. **Helpfulness**: Overall helpfulness of the response to the prompt.
2. **Correctness**: Inclusion of all pertinent facts without errors. 
3. **Coherence**: Consistency and clarity of expression. 
4. **Complexity**: Intellectual depth required to write response (i.e. whether the response can be written by anyone with basic language competency or requires deep domain expertise).
5. **Verbosity**: Amount of detail included in the response, relative to what is asked for in the prompt.

Nonetheless, if you are only interested in using it as a conventional reward model that outputs a singular scalar, we recommend using the weights ```[0, 0, 0, 0, 0.65, 0.8, 0.45, 0.55, -0.4]``` to do elementwise multiplication with the predicted attributes (which outputs 9 float values in line with [Llama2-13B-SteerLM-RM](https://huggingface.co/nvidia/Llama2-13B-SteerLM-RM) but the first four are not trained or used)


Llama3-70B-SteerLM-RM is trained from [Llama 3 70B Base](https://huggingface.co/meta-llama/Meta-Llama-3-70B) with the [HelpSteer2](https://huggingface.co/datasets/nvidia/HelpSteer2) dataset


HelpSteer Paper : [HelpSteer: Multi-attribute Helpfulness Dataset for SteerLM](http://arxiv.org/abs/2311.09528)

SteerLM Paper: [SteerLM: Attribute Conditioned SFT as an (User-Steerable) Alternative to RLHF](https://arxiv.org/abs/2310.05344)

Llama3-70B-SteerLM-RM is trained with NVIDIA [NeMo-Aligner](https://github.com/NVIDIA/NeMo-Aligner), a scalable toolkit for performant and efficient model alignment. NeMo-Aligner is built using the [NeMo Framework](https://github.com/NVIDIA/NeMo) which allows for scaling training with data and model parallelism for all components of alignment. All of our checkpoints are compatible with the NeMo ecosystem, allowing for inference deployment and further customization.

## RewardBench Primary Dataset LeaderBoard


 | Model  | Type of Model|  Overall | Chat | Chat-Hard | Safety | Reasoning | 
|:-----------------------------|:----------------|:-----|:----------|:-------|:----------|:-----------------------|
  | _**Nemotron-4-340B-RM**_  | Trained with Permissive Licensed Data | **92.0**  | 95.8 |   **87.1** | 91.5  | 93.7 | 
  | ArmoRM-Llama3-8B-v0.1 | Trained with GPT4 Generated Data|  90.8 | 96.9     | 76.8  | 92.2 | 97.3  | 
  | Cohere May 2024   | Proprietary LLM |   89.5  | 96.4     | 71.3      | 92.7 | 97.7  | 
  | _**Llama3-70B-SteerLM-RM**_  | Trained with Permissive Licensed Data | 88.8  | 91.3 |   80.3 | **92.8**  | 90.7 | 
  | Google Gemini Pro 1.5 | Proprietary LLM |  88.1 | 92.3  | 80.6 | 87.5  | 92.0  | 
  | RLHFlow-Llama3-8B | Trained with GPT4 Generated Data |   87.1   |  **98.3**  |  65.8   |    89.7     |   94.7 | 
  | Cohere March 2024 | Proprietary LLM | 87.1|  94.7 | 65.1 | 90.3 | **98.7** |
  | GPT-4-0125-Preview |Proprietary LLM |   85.9   | 95.3     | 74.3      | 87.2     | 86.9      | 
  | Claude 3 Opus 0229 | Proprietary LLM | 80.7 | 94.7 | 60.3 | 89.1 | 78.7 | 
  | Llama3 70B Instruct | Trained with Permissive Licensed Data | 76.0 | 97.6 | 58.9 | 69.2 | 78.5 | 
       
  
Last updated: 12 Jun 2024

Note that we only consider the first four categories in RewardBench, because the optional fifth category (Prior Sets) is 
1. Heavily towards models trained on Anthropic HHH, Anthropic Helpful, OpenAI Summarize and Stanford Human Preferences (constituent datasets for the Prior Sets category) and therefore can be easily gamed (see About page on RewardBench)
2. Extremely noisy with many constituent datasets (e.g. Anthropic Helpful, OpenAI summarize) not being able to reach val accuracy beyond ~0.70 even if training on the training set alone, suggesting unchecked errors in annotation (see https://arxiv.org/abs/2401.06080 for details)
3. Not reported by several models such as Google Gemini Pro 1.5 and Claude 3 Opus 0229, making comparisons unfair since Prior Sets typically has lower scores than other categories


## Usage:


You can use the model with [NeMo Aligner](https://github.com/NVIDIA/NeMo-Aligner) following [SteerLM training user guide](https://docs.nvidia.com/nemo-framework/user-guide/latest/modelalignment/steerlm.html).


1. Spin up an inference server within the [NeMo Aligner container](https://github.com/NVIDIA/NeMo-Aligner/blob/main/Dockerfile)

```python
python /opt/NeMo-Aligner/examples/nlp/gpt/serve_reward_model.py \
      rm_model_file=Llama3-70B-SteerLM-RM \
      trainer.num_nodes=1 \
      trainer.devices=8 \
      ++model.tensor_model_parallel_size=8 \
      ++model.pipeline_model_parallel_size=1 \
      inference.micro_batch_size=2 \
      inference.port=1424
```

2. Annotate data files using the served reward model. As an example, this can be the Open Assistant train/val files. Then follow the next step to train a SteerLM model based on [SteerLM training user guide](https://docs.nvidia.com/nemo-framework/user-guide/latest/modelalignment/steerlm.html#step-5-train-the-attribute-conditioned-sft-model) .

```python
python /opt/NeMo-Aligner/examples/nlp/data/steerlm/preprocess_openassistant_data.py --output_directory=data/oasst

python /opt/NeMo-Aligner/examples/nlp/data/steerlm/attribute_annotate.py \
      --input-file=data/oasst/train.jsonl \
      --output-file=data/oasst/train_labeled.jsonl \
      --port=1424
```

3. Alternatively, this can be any conversational data file (in .jsonl) in the following format, where each line looks like 

```json
{
    "conversations": [
              {"value": <user_turn_1>, "from": "User", "label": None},
              {"value": <assistant_turn_1>, "from": "Assistant", "label": <formatted_label_1>},
              {"value": <user_turn_2>, "from": "User", "label": None},
              {"value": <assistant_turn_2>, "from": "Assistant", "label": <formatted_label_2>},
          ],
    "mask": "User"
}
```

Ideally, each ```<formatted_label_n>``` refers to the ground truth label for the assistant turn but if they are not available, we can also use ```helpfulness:4,correctness:4,coherence:4,complexity:2,verbosity:2``` (i.e. defaulting to moderate complexity and verbosity, adjust if needed. or simply ```helpfulness:-1```. It must not be ```None``` or an empty string.



## Contact

E-Mail: [Zhilin Wang](mailto:[email protected])


## Citation

If you find this dataset useful, please cite the following works

```bibtex
@misc{wang2023helpsteer,
      title={HelpSteer: Multi-attribute Helpfulness Dataset for SteerLM}, 
      author={Zhilin Wang and Yi Dong and Jiaqi Zeng and Virginia Adams and Makesh Narsimhan Sreedhar and Daniel Egert and Olivier Delalleau and Jane Polak Scowcroft and Neel Kant and Aidan Swope and Oleksii Kuchaiev},
      year={2023},
      eprint={2311.09528},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

```bibtex
@misc{dong2023steerlm,
      title={SteerLM: Attribute Conditioned SFT as an (User-Steerable) Alternative to RLHF}, 
      author={Yi Dong and Zhilin Wang and Makesh Narsimhan Sreedhar and Xianchao Wu and Oleksii Kuchaiev},
      year={2023},
      eprint={2310.05344},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```