zihanliu commited on
Commit
ef14068
1 Parent(s): 9c51750

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -36,7 +36,7 @@ Results in ConvRAG Bench are as follows:
36
  | Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.14 | 55.17 | 58.25 |
37
  | Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 53.89 | 53.99 | 57.14 |
38
 
39
- Note that ChatQA-1.5 is built based on Llama-3 base model, and ChatQA-1.0 is built based on Llama-2 base model. We used some samples from the HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial. The data and evaluation scripts for ConvRAG can be found [here](https://huggingface.co/datasets/nvidia/ConvRAG-Bench).
40
 
41
 
42
  ## Prompt Format
@@ -104,7 +104,7 @@ print(tokenizer.decode(response, skip_special_tokens=True))
104
  ```
105
 
106
  ### run retrieval to get top-n chunks as context
107
- This can be applied to the scenario when the document is very long, so that it is necessary to run retrieval. Here, we use our [Dragon-multiturn](https://huggingface.co/nvidia/dragon-multiturn-query-encoder) retriever which can handle conversatinoal query. In addition, we provide a few [documents](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B/tree/main/docs) for users to play with.
108
 
109
  ```python
110
  from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
 
36
  | Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.14 | 55.17 | 58.25 |
37
  | Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 53.89 | 53.99 | 57.14 |
38
 
39
+ Note that ChatQA-1.5 is built based on Llama-3 base model, and ChatQA-1.0 is built based on Llama-2 base model. ChatQA-1.5 used some samples from the HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial. The data and evaluation scripts for ConvRAG can be found [here](https://huggingface.co/datasets/nvidia/ConvRAG-Bench).
40
 
41
 
42
  ## Prompt Format
 
104
  ```
105
 
106
  ### run retrieval to get top-n chunks as context
107
+ This can be applied to the scenario when the document is very long, so that it is necessary to run retrieval. Here, we use our [Dragon-multiturn](https://huggingface.co/nvidia/dragon-multiturn-query-encoder) retriever which can handle conversatinoal query. In addition, we provide a few [documents](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B/tree/main/docs) for users to play with.
108
 
109
  ```python
110
  from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel