zihanliu commited on
Commit
10ca0d7
1 Parent(s): d3fe95e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -0
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - nvidia
8
+ - chatqa-1.5
9
+ - chatqa
10
+ - llama-3
11
+ - pytorch
12
+ ---
13
+
14
+ ## Model Details
15
+ We release ChatQA1.5, which excels at RAG-based conversational question answering (QA). ChatQA-1.5 is built using the training recipe from ChatQA (1.0), and it is built on top of Llama-3 foundation model. Additionally, we incorporate more conversational QA data to enhance its tabular and arithmatic calculation capability. ChatQA-1.5 has two variants: ChatQA-1.5-8B and ChatQA-1.5-70B.
16
+
17
+
18
+ ## Benchmark Results
19
+ Results in ConvRAG are as follows:
20
+
21
+ | | ChatQA-1.0-7B | Command-R-Plus | Llama-3-instruct-70b | GPT-4-0613 | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
22
+ | -- | -- | -- | -- | -- | -- | -- | -- |
23
+ | Doc2Dial | 37.88 | 33.51 | 37.88 | 34.16 | 38.9 | 39.33 | 41.26 |
24
+ | QuAC | 29.69 | 34.16 | 36.96 | 40.29 | 41.82 | 39.73 | 38.82 |
25
+ | QReCC | 46.97 | 49.77 | 51.34 | 52.01 | 48.05 | 49.03 | 51.40 |
26
+ | CoQA | 76.61 | 69.71 | 76.98 | 77.42 | 78.57 | 76.46 | 78.44 |
27
+ | DoQA | 41.57 | 40.67 | 41.24 | 43.39 | 51.94 | 49.6 | 50.67 |
28
+ | ConvFinQA | 51.61 | 71.21 | 76.6 | 81.28 | 73.69 | 78.46 | 81.88 |
29
+ | SQA | 61.87 | 74.07 | 69.61 | 79.21 | 69.14 | 73.28 | 83.82 |
30
+ | TopioCQA | 45.45 | 53.77 | 49.72 | 45.09 | 50.98 | 49.96 | 55.63 |
31
+ | HybriDial* | 54.51 | 46.7 | 48.59 | 49.81 | 56.44 | 65.76 | 68.27 |
32
+ | INSCIT | 30.96 | 35.76 | 36.23 | 36.34 | 31.9 | 30.1 | 32.31 |
33
+ | Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.14 | 55.17 | 58.25 |
34
+ | Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 53.89 | 53.99 | 57.14 |
35
+
36
+ Note that ChatQA-1.5 used some samples from the HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial.
37
+
38
+ ## How to use
39
+ ```python
40
+ from transformers import AutoTokenizer, AutoModelForCausalLM
41
+ import torch
42
+
43
+ model_id = "nvidia/ChatQA-1.5-8B"
44
+
45
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
46
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
47
+
48
+ messages = [
49
+ {"role": "user", "content": "what is the percentage change of the revenue from fourth quarter fiscal year 2023 to fourth quarter fiscal year 2024?"}
50
+ ]
51
+
52
+ context = """NVIDIA (NASDAQ: NVDA) today reported revenue for the fourth quarter ended January 28, 2024, of $22.1 billion, up 22% from the previous quarter and up 265% from a year ago.\nFor the quarter, GAAP earnings per diluted share was $4.93, up 33% from the previous quarter and up 765% from a year ago. Non-GAAP earnings per diluted share was $5.16, up 28% from the previous quarter and up 486% from a year ago.\nQ4 Fiscal 2024 Summary\nGAAP\n| $ in millions, except earnings per share | Q4 FY24 | Q3 FY24 | Q4 FY23 | Q/Q | Y/Y |\n| Revenue | $22,103 | $18,120 | $6,051 | Up 22% | Up 265% |\n| Gross margin | 76.0% | 74.0% | 63.3% | Up 2.0 pts | Up 12.7 pts |\n| Operating expenses | $3,176 | $2,983 | $2,576 | Up 6% | Up 23% |\n| Operating income | $13,615 | $10,417 | $1,257 | Up 31% | Up 983% |\n| Net income | $12,285 | $9,243 | $1,414 | Up 33% | Up 769% |\n| Diluted earnings per share | $4.93 | $3.71 | $0.57 | Up 33% | Up 765% |"""
53
+
54
+ def get_formatted_input(messages, context):
55
+ system = "System: This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context."
56
+ instruction = "Please give a full and complete answer for the question."
57
+
58
+ for item in enumerate(messages):
59
+ if item['role'] == "user":
60
+ item['content'] = instruction + " " + item['content']
61
+ break
62
+
63
+ conversation = ""
64
+ for item in turn_list:
65
+ if item["role"] == "user":
66
+ conversation += "User: " + item["content"] + "\n\n"
67
+ else:
68
+ conversation += "Assistant: " + item["content"] + "\n\n"
69
+ conversation += "Assistant:"
70
+
71
+ formatted_input = system + "\n\n" + context + "\n\n" + conversation
72
+ return formatted_input
73
+
74
+ formatted_input = get_formatted_input(messages, context)
75
+ input_ids = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)
76
+
77
+ terminators = [
78
+ tokenizer.eos_token_id,
79
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
80
+ ]
81
+
82
+ outputs = model.generate(
83
+ input_ids,
84
+ max_new_tokens=128,
85
+ eos_token_id=terminators)
86
+
87
+ response = outputs[0][input_ids.shape[-1]:]
88
+ print(tokenizer.decode(response, skip_special_tokens=True))
89
+ ```
90
+
91
+ ## Contact
92
+ Zihan Liu ([email protected]), Wei Ping ([email protected])
93
+
94
+ ## Citation
95
+ <pre>@article{liu2024chatqa,
96
+ title={ChatQA: Building GPT-4 Level Conversational QA Models},
97
+ author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
98
+ journal={arXiv preprint arXiv:2401.10225},
99
+ year={2024}}</pre>
100
+
101
+
102
+ ## License
103
+ The use of this model is governed by the [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://llama.meta.com/llama3/license/)
104
+