zihanliu commited on
Commit
f31392b
·
verified ·
1 Parent(s): 61ef0e5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -11
README.md CHANGED
@@ -13,7 +13,7 @@ tags:
13
 
14
 
15
  ## Model Details
16
- We release ChatQA-1.5, which excels at RAG-based conversational question answering (QA). ChatQA-1.5 is built using the training recipe from [ChatQA (1.0)](https://arxiv.org/abs/2401.10225), and it is built on top of Llama-3 foundation model. Additionally, we incorporate more conversational QA data to enhance its tabular and arithmatic calculation capability. ChatQA-1.5 has two variants: ChatQA-1.5-8B and ChatQA-1.5-70B.
17
 
18
 
19
  ## Benchmark Results
@@ -54,6 +54,9 @@ Assistant:
54
 
55
 
56
  ## How to use
 
 
 
57
  ```python
58
  from transformers import AutoTokenizer, AutoModelForCausalLM
59
  import torch
@@ -67,7 +70,7 @@ messages = [
67
  {"role": "user", "content": "what is the percentage change of the net income from Q4 FY23 to Q4 FY24?"}
68
  ]
69
 
70
- context = """NVIDIA (NASDAQ: NVDA) today reported revenue for the fourth quarter ended January 28, 2024, of $22.1 billion, up 22% from the previous quarter and up 265% from a year ago.\nFor the quarter, GAAP earnings per diluted share was $4.93, up 33% from the previous quarter and up 765% from a year ago. Non-GAAP earnings per diluted share was $5.16, up 28% from the previous quarter and up 486% from a year ago.\nQ4 Fiscal 2024 Summary\nGAAP\n| $ in millions, except earnings per share | Q4 FY24 | Q3 FY24 | Q4 FY23 | Q/Q | Y/Y |\n| Revenue | $22,103 | $18,120 | $6,051 | Up 22% | Up 265% |\n| Gross margin | 76.0% | 74.0% | 63.3% | Up 2.0 pts | Up 12.7 pts |\n| Operating expenses | $3,176 | $2,983 | $2,576 | Up 6% | Up 23% |\n| Operating income | $13,615 | $10,417 | $1,257 | Up 31% | Up 983% |\n| Net income | $12,285 | $9,243 | $1,414 | Up 33% | Up 769% |\n| Diluted earnings per share | $4.93 | $3.71 | $0.57 | Up 33% | Up 765% |"""
71
 
72
  def get_formatted_input(messages, context):
73
  system = "System: This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context."
@@ -79,18 +82,12 @@ def get_formatted_input(messages, context):
79
  item['content'] = instruction + " " + item['content']
80
  break
81
 
82
- conversation = ""
83
- for item in messages:
84
- if item["role"] == "user":
85
- conversation += "User: " + item["content"] + "\n\n"
86
- else:
87
- conversation += "Assistant: " + item["content"] + "\n\n"
88
- conversation += "Assistant:"
89
-
90
  formatted_input = system + "\n\n" + context + "\n\n" + conversation
 
91
  return formatted_input
92
 
93
- formatted_input = get_formatted_input(messages, context)
94
  tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)
95
 
96
  terminators = [
@@ -104,6 +101,63 @@ response = outputs[0][tokenized_prompt.input_ids.shape[-1]:]
104
  print(tokenizer.decode(response, skip_special_tokens=True))
105
  ```
106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
  ## Correspondence to
108
  Zihan Liu ([email protected]), Wei Ping ([email protected])
109
 
 
13
 
14
 
15
  ## Model Details
16
+ We introduce ChatQA-1.5, which excels at conversational question answering (QA) and retrieval-augumented generation (RAG). ChatQA-1.5 is built using the training recipe from [ChatQA (1.0)](https://arxiv.org/abs/2401.10225), and it is built on top of Llama-3 foundation model. Additionally, we incorporate more conversational QA data to enhance its tabular and arithmatic calculation capability. ChatQA-1.5 has two variants: ChatQA-1.5-8B and ChatQA-1.5-70B. Both models were originally trained using [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), we converted the checkpoints to Hugging Face format.
17
 
18
 
19
  ## Benchmark Results
 
54
 
55
 
56
  ## How to use
57
+
58
+ ### take the whole document as context
59
+ This can be applied to the scenario where the whole document can be fitted into the model, so that there is no need to run retrieval over the document.
60
  ```python
61
  from transformers import AutoTokenizer, AutoModelForCausalLM
62
  import torch
 
70
  {"role": "user", "content": "what is the percentage change of the net income from Q4 FY23 to Q4 FY24?"}
71
  ]
72
 
73
+ document = """NVIDIA (NASDAQ: NVDA) today reported revenue for the fourth quarter ended January 28, 2024, of $22.1 billion, up 22% from the previous quarter and up 265% from a year ago.\nFor the quarter, GAAP earnings per diluted share was $4.93, up 33% from the previous quarter and up 765% from a year ago. Non-GAAP earnings per diluted share was $5.16, up 28% from the previous quarter and up 486% from a year ago.\nQ4 Fiscal 2024 Summary\nGAAP\n| $ in millions, except earnings per share | Q4 FY24 | Q3 FY24 | Q4 FY23 | Q/Q | Y/Y |\n| Revenue | $22,103 | $18,120 | $6,051 | Up 22% | Up 265% |\n| Gross margin | 76.0% | 74.0% | 63.3% | Up 2.0 pts | Up 12.7 pts |\n| Operating expenses | $3,176 | $2,983 | $2,576 | Up 6% | Up 23% |\n| Operating income | $13,615 | $10,417 | $1,257 | Up 31% | Up 983% |\n| Net income | $12,285 | $9,243 | $1,414 | Up 33% | Up 769% |\n| Diluted earnings per share | $4.93 | $3.71 | $0.57 | Up 33% | Up 765% |"""
74
 
75
  def get_formatted_input(messages, context):
76
  system = "System: This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context."
 
82
  item['content'] = instruction + " " + item['content']
83
  break
84
 
85
+ conversation = '\n\n'.join(["User: " + item["content"] if item["role"] == "user" else "Assistant: " + item["content"] for item in messages]) + "\n\nAssistant:"
 
 
 
 
 
 
 
86
  formatted_input = system + "\n\n" + context + "\n\n" + conversation
87
+
88
  return formatted_input
89
 
90
+ formatted_input = get_formatted_input(messages, document)
91
  tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)
92
 
93
  terminators = [
 
101
  print(tokenizer.decode(response, skip_special_tokens=True))
102
  ```
103
 
104
+ ### run retrieval to get top-n chunks as context
105
+ This can be applied to the scenario when the document is very long, so that it is necessary to run retrieval. Here, we use our [Dragon-multiturn](https://huggingface.co/nvidia/dragon-multiturn-query-encoder) retriever which can handle conversatinoal query. In addition, we provide a few [documents]() for users to play with.
106
+
107
+ ```python
108
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
109
+ import torch
110
+ import json
111
+
112
+ ## load ChatQA-1.5 tokenizer and model
113
+ model_id = "nvidia/ChatQA-1.5-8B"
114
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
115
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
116
+
117
+ ## load retriever tokenizer and model
118
+ retriever_tokenizer = AutoTokenizer.from_pretrained('nvidia/dragon-multiturn-query-encoder')
119
+ query_encoder = AutoModel.from_pretrained('nvidia/dragon-multiturn-query-encoder')
120
+ context_encoder = AutoModel.from_pretrained('nvidia/dragon-multiturn-context-encoder')
121
+
122
+ ## prepare documents, we take landrover car manual document that we provide as an example
123
+ chunk_list = json.load(open("docs.json"))['landrover']
124
+
125
+ messages = [
126
+ {"role": "user", "content": "how to connect the bluetooth in the car?"}
127
+ ]
128
+
129
+ ### running retrieval
130
+ ## convert query into a format as follows:
131
+ ## user: {user}\nagent: {agent}\nuser: {user}
132
+ formatted_query_for_retriever = '\n'.join([turn['role'] + ": " + turn['content'] for turn in messages]).strip()
133
+
134
+ query_input = retriever_tokenizer(formatted_query_for_retriever, return_tensors='pt')
135
+ ctx_input = retriever_tokenizer(chunk_list, padding=True, truncation=True, max_length=512, return_tensors='pt')
136
+ query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :]
137
+ ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :]
138
+
139
+ ## Compute similarity scores using dot product and rank the similarity
140
+ similarities = query_emb.matmul(ctx_emb.transpose(0, 1)) # (1, num_ctx)
141
+ ranked_results = torch.argsort(similarities, dim=-1, descending=True) # (1, num_ctx)
142
+
143
+ ## get top-n chunks (n=5)
144
+ retrieved_chunks = [chunk_list[idx] for idx in ranked_results.tolist()[0][:5]]
145
+ context = "\n\n".join(retrieved_chunks)
146
+
147
+ ### running text generation
148
+ formatted_input = get_formatted_input(messages, context)
149
+ tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)
150
+
151
+ terminators = [
152
+ tokenizer.eos_token_id,
153
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
154
+ ]
155
+ outputs = model.generate(input_ids=tokenized_prompt.input_ids, attention_mask=tokenized_prompt.attention_mask, max_new_tokens=128, eos_token_id=terminators)
156
+
157
+ response = outputs[0][tokenized_prompt.input_ids.shape[-1]:]
158
+ print(tokenizer.decode(response, skip_special_tokens=True))
159
+ ```
160
+
161
  ## Correspondence to
162
  Zihan Liu ([email protected]), Wei Ping ([email protected])
163