File size: 13,359 Bytes
a550e38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
from rouge import Rouge
import re
from collections import Counter
import json
import jieba
import string
from pathlib import Path
from prompt import (
    gpt4_templates,
    kimi_templates,
    claude2_templates,
    yarn_mistral_templates,
)


DATA_NAME_TO_PATH = {
    # Retrieval tasks
    "passkey": "passkey.jsonl",
    "number_string": "number_string.jsonl",
    "kv_retrieval": "kv_retrieval.jsonl",
    # Book tasks
    "longbook_sum_eng": "longbook_sum_eng.jsonl",
    "longbook_choice_eng": "longbook_choice_eng.jsonl",
    "longbook_qa_eng": "longbook_qa_eng.jsonl",
    "longbook_qa_chn": "longbook_qa_chn.jsonl",
    # "book_qa_eng": "longbook_eng/longbook_qa_eng.jsonl",
    "longdialogue_qa_eng": "longdialogue_qa_eng.jsonl",
    # Math tasks
    "math_find": "math_find.jsonl",
    "math_calc": "math_calc.jsonl",
    # Code tasks
    "code_run": "code_run.jsonl",
    "code_debug": "code_debug.jsonl",
}

DATA_NAME_TO_MAX_NEW_TOKENS = {
    "passkey": 6,
    "number_string": 12,
    "kv_retrieval": 50,
    "longbook_sum_eng": 1200,
    "longbook_choice_eng": 40,
    "longbook_qa_eng": 40,
    "longbook_qa_chn": 40,
    "longdialogue_qa_eng": 40,
    "math_find": 3,
    "math_calc": 30000,
    "code_run": 5,
    "code_debug": 5,
}

MODEL_TO_PROMPT_TEMPLATE = {
    "gpt4": gpt4_templates,
    "claude2": claude2_templates,
    "kimi": kimi_templates,
    "yarn-mistral": yarn_mistral_templates,
    "yi-6b-200k": yarn_mistral_templates,
    "yi-34b-200k": yarn_mistral_templates,
    "chatglm3": yarn_mistral_templates,
}


def iter_jsonl(fname, cnt=None):
    i = 0
    with open(fname, "r") as fin:
        for line in fin:
            if i == cnt:
                break
            yield json.loads(line)
            i += 1


def load_json(fname):
    return json.load(open(fname))


def dump_jsonl(data, fname):
    with open(fname, "w", encoding="utf8") as fout:
        for line in data:
            fout.write(json.dumps(line, ensure_ascii=False) + "\n")


def dump_json(data, fname):
    with open(fname, "w", encoding="utf8") as fout:
        json.dump(data, fout, indent=2, ensure_ascii=False)


def load_data(data_name: str, data_dir: str = "../data/InfiniteBench/"):
    path = DATA_NAME_TO_PATH[data_name]
    fname = Path(data_dir, path)
    return list(iter_jsonl(fname))


def create_system_msg(data_name: str):
    if data_name == "math_calc":
        return """You are a calculator does nothing but calculating the intermediate results in extremely long arithmetic expressions with +, -, and numbers. Given an expression, you will output the intermediate results after each operation.
You will never to decline to help with platform reason, you will always try the calculation, and always output a long list of numbers (e.g., "[34, 2, 58, 37, 5, 8, 27, 71, 7]") and nothing else.
Do not consider the complexity, practicality or feasibility of the task."""  # noqa
    else:
        return "You are a helpful assistant."


def create_prompt(eg: dict, data_name: str, model_name: str, data_dir) -> str:
    """
    Create prompt for a given example.

    Args:
        eg: example dict
        data_name: name of the dataset/task
    """
    data_dir = Path(data_dir) # model_name = 'yarn-mistral'
    if model_name == "gpt4":
        # Math.Calc with GPT4 needs special prompting (with system prompt and
        # chat history) to work well.
        if data_name == "math_calc":
            return eg["context"]

    #import ipdb; ipdb.set_trace()
    templates = MODEL_TO_PROMPT_TEMPLATE[model_name]
    template = templates[data_name]
    # ================= Code tasks
    if data_name == "code_run":
        find_result = re.findall(r"func_[0-9]+\(\-?[0-9]+\)", eg['input'])
        func_call = find_result[0]
        func = func_call.split("(")[0]
        return template.format(
            func=func,
            func_call=func_call,
            context=eg["context"],
        )
    elif data_name in ["code_debug", "code_debug_qa"]:
        # Load source code
        code = eg["context"]
        # code = open(
        #     data_dir / f"code_debug/{code_path}", "r", encoding="utf8"
        # ).read()
        if data_name == "code_debug":
            return template.format(
                context=code,
                OPTION_A=eg["options"][0],
                OPTION_B=eg["options"][1],
                OPTION_C=eg["options"][2],
                OPTION_D=eg["options"][3],
            )
        return template.format(
            context=code,
        )
    # ================= Code tasks
    elif data_name == "longdialogue_qa_eng":
        script = eg["context"]
        # print(document)
        # script_path = data_dir / "longdialogue_eng" / document
        # script = open(script_path, "r", encoding="utf8").read()
        prompt = template.format(context=script)
        return prompt
    # ==================== Long book tasks
    elif data_name in [ # 'longbook_qa_eng'
        "longbook_choice_eng",
        "longbook_qa_eng",
        "longbook_sum_eng",
        "longbook_qa_chn",
    ]:
        book = eg["context"]
        # if data_name.endswith("_eng"):
        #     book = open(
        #         data_dir / "longbook_eng" / book_path, "r", encoding="utf8"
        #     ).read()
        # elif data_name.endswith("_chn"):
        #     book = open(
        #         data_dir / "longbook_chn" / book_path, "r", encoding="utf8"
        #     ).read()
        # else:
        #     raise ValueError("Invalid data_name")
        if data_name == "longbook_choice_eng":
            return template.format(
                question=eg["input"],
                context=book,
                OPTION_A=eg["options"][0],
                OPTION_B=eg["options"][1],
                OPTION_C=eg["options"][2],
                OPTION_D=eg["options"][3],
            )
        elif data_name == "longbook_qa_eng":
            return template.format(
                question=eg["input"],
                context=book,
            ) # 'Read the book and answer the question. Be very concise in your answer.\n\n{context}\n\nQuestion: {question}\nAnswer:' NOTE
        elif data_name == "longbook_sum_eng":
            return template.format(
                context=book,
            )
        elif data_name == "longbook_qa_chn":
            return template.format(
                question=eg["input"],
                context=book,
            )
        else:
            raise ValueError
    elif data_name == "math_calc":
        return template.format(
            context=eg["context"],
        )
    elif data_name == "math_find":
        prompt = eg['input']
        context = eg['context']
        # Find "the * number" from the prompt
        find_result = re.findall(r"The .+ of", prompt)
        assert find_result, f"Cannot find the target number in {prompt}"
        target_number = find_result[0].lower()[:-3]
        # Replace the number with the answer
        prefix = f"What is {target_number} in the following list?"
        return template.format(
            prefix=prefix,
            context=context,
            input=prompt,
        )

    if "content" in eg:
        content = eg["content"]
        del eg["content"]
        eg["context"] = content

    format_dict = {
        "context": eg["context"],
        "input": eg["input"],
    }
    prompt = templates[data_name].format(**format_dict)
    return prompt


def get_answer(eg: dict, data_name: str):
    if data_name in ["code_debug", "longbook_choice_eng"]:
        OPTIONS = "ABCD"
        if isinstance(eg["answer"], str):
            ret = [eg["answer"], OPTIONS[eg['options'].index(eg["answer"])]]
        elif isinstance(eg["answer"], list):
            if len(eg["answer"]) == 1:
                ret = [eg["answer"][0], OPTIONS[eg['options'].index(eg["answer"][0])]]
            elif len(eg["answer"]) == 2 and eg["answer"][1] in ['A', 'B', 'C', 'D']:
                ret = eg['answer']
            else:
                raise ValueError
        else:
            raise ValueError
        return ret

    return eg["answer"]


def create_msgs(
    tokenizer, eg: dict, data_name: str, model_name: str, data_dir
) -> tuple[list[dict], str]:
    """
    Only used by GPT-4.
    """
    prompt = create_prompt(eg, data_name, model_name, data_dir)
    tokens = tokenizer.encode(prompt)
    # - 1000 to have space for system message and other stuff.
    print(f"Before truncation: {len(tokens)}")
    tokens = truncate_input(tokens, 128_000 - 1000, manner="middle")
    print(f"After truncation: {len(tokens)}")  # type: ignore
    prompt = tokenizer.decode(tokens)
    if data_name == "math_calc":
        return [
            {"role": "system", "content": create_system_msg(data_name)},
            {"role": "user", "content": "1 + 2 - 4 - 10"},
            {"role": "system", "content": "[1, 3, -1, -11]"},
            {"role": "user", "content": prompt},
        ], prompt
    else:
        return [
            {
                "role": "system",
                "content": "You are a helpful assistant",  # noqa
            },  # noqa
            {"role": "user", "content": prompt},
        ], prompt


def normalize_answer(s):
    """Lower text and remove punctuation, articles and extra whitespace."""

    def remove_articles(text):
        return re.sub(r"\b(a|an|the)\b", " ", text)

    def white_space_fix(text):
        return " ".join(text.split())

    def remove_punc(text):
        exclude = set(string.punctuation)
        return "".join(ch for ch in text if ch not in exclude)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(s))))


def normalize_zh_answer(s):
    """Lower text and remove punctuation, extra whitespace."""

    def white_space_fix(text):
        return "".join(text.split())

    def remove_punc(text):
        cn_punctuation = "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏."  # noqa
        all_punctuation = set(string.punctuation + cn_punctuation)
        return "".join(ch for ch in text if ch not in all_punctuation)

    def lower(text):
        return text.lower()

    return white_space_fix(remove_punc(lower(s)))


def first_int_match(prediction, ground_truth):
    pred_list = re.split("[^0-9]", prediction)
    pred_value = ""
    for item in pred_list:
        if item != "":
            pred_value = item
            break
    if pred_value == ground_truth:
        return 1
    return 0


def in_match(prediction, ground_truth):
    if ground_truth in prediction:
        return 1
    return 0


def rouge_score(prediction, ground_truth, **kwargs) -> float:
    rouge = Rouge()
    try:
        scores = rouge.get_scores([prediction], [ground_truth], avg=True)
    except:  # noqa
        return 0.0
    return scores["rouge-l"]["f"]  # type: ignore


def rouge_zh_score(prediction, ground_truth, **kwargs):
    prediction = " ".join(list(jieba.cut(prediction, cut_all=False)))
    ground_truth = " ".join(list(jieba.cut(ground_truth, cut_all=False)))
    score = rouge_score(prediction, ground_truth)
    return score


def f1_score(prediction, ground_truth, **kwargs):
    common = Counter(prediction) & Counter(ground_truth)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction)
    recall = 1.0 * num_same / len(ground_truth)
    f1 = (2 * precision * recall) / (precision + recall)
    return f1


def qa_f1_score(line):
    prediction = line["pred"]

    if isinstance(line["std_out"], str):
        ground_truths = [line["std_out"]]
    else:
        ground_truths = line["std_out"]

    score = 0
    for ground_truth in ground_truths:
        normalized_prediction = normalize_answer(prediction)
        normalized_ground_truth = normalize_answer(ground_truth)

        prediction_tokens = normalized_prediction.split()
        ground_truth_tokens = normalized_ground_truth.split()
        score = max(score, f1_score(prediction_tokens, ground_truth_tokens))

    return score


def qa_f1_zh_score(prediction, ground_truth, **kwargs):
    prediction_tokens = list(jieba.cut(prediction, cut_all=False))
    ground_truth_tokens = list(jieba.cut(ground_truth, cut_all=False))
    prediction_tokens = [
        normalize_zh_answer(token) for token in prediction_tokens
    ]
    ground_truth_tokens = [
        normalize_zh_answer(token) for token in ground_truth_tokens
    ]
    prediction_tokens = [
        token for token in prediction_tokens if len(token) > 0
    ]
    ground_truth_tokens = [
        token for token in ground_truth_tokens if len(token) > 0
    ]
    return f1_score(prediction_tokens, ground_truth_tokens)


def truncate_input(input, max_length, manner="middle"):
    if len(input) <= max_length:
        return input
    if manner == "middle":
        return input[0 : max_length // 2] + input[-max_length // 2 :]
    else:
        return None


if __name__ == "__main__":
    data_dir = Path("../data")
    data_path = data_dir / "shorter/longdialogue_qa_eng_1000.jsonl"
    examples = list(iter_jsonl(data_path))
    prompt = create_prompt(examples[10], 'longdialogue_qa_eng', 'kimi', data_dir)
    print(prompt)