File size: 13,359 Bytes
a550e38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
from rouge import Rouge
import re
from collections import Counter
import json
import jieba
import string
from pathlib import Path
from prompt import (
gpt4_templates,
kimi_templates,
claude2_templates,
yarn_mistral_templates,
)
DATA_NAME_TO_PATH = {
# Retrieval tasks
"passkey": "passkey.jsonl",
"number_string": "number_string.jsonl",
"kv_retrieval": "kv_retrieval.jsonl",
# Book tasks
"longbook_sum_eng": "longbook_sum_eng.jsonl",
"longbook_choice_eng": "longbook_choice_eng.jsonl",
"longbook_qa_eng": "longbook_qa_eng.jsonl",
"longbook_qa_chn": "longbook_qa_chn.jsonl",
# "book_qa_eng": "longbook_eng/longbook_qa_eng.jsonl",
"longdialogue_qa_eng": "longdialogue_qa_eng.jsonl",
# Math tasks
"math_find": "math_find.jsonl",
"math_calc": "math_calc.jsonl",
# Code tasks
"code_run": "code_run.jsonl",
"code_debug": "code_debug.jsonl",
}
DATA_NAME_TO_MAX_NEW_TOKENS = {
"passkey": 6,
"number_string": 12,
"kv_retrieval": 50,
"longbook_sum_eng": 1200,
"longbook_choice_eng": 40,
"longbook_qa_eng": 40,
"longbook_qa_chn": 40,
"longdialogue_qa_eng": 40,
"math_find": 3,
"math_calc": 30000,
"code_run": 5,
"code_debug": 5,
}
MODEL_TO_PROMPT_TEMPLATE = {
"gpt4": gpt4_templates,
"claude2": claude2_templates,
"kimi": kimi_templates,
"yarn-mistral": yarn_mistral_templates,
"yi-6b-200k": yarn_mistral_templates,
"yi-34b-200k": yarn_mistral_templates,
"chatglm3": yarn_mistral_templates,
}
def iter_jsonl(fname, cnt=None):
i = 0
with open(fname, "r") as fin:
for line in fin:
if i == cnt:
break
yield json.loads(line)
i += 1
def load_json(fname):
return json.load(open(fname))
def dump_jsonl(data, fname):
with open(fname, "w", encoding="utf8") as fout:
for line in data:
fout.write(json.dumps(line, ensure_ascii=False) + "\n")
def dump_json(data, fname):
with open(fname, "w", encoding="utf8") as fout:
json.dump(data, fout, indent=2, ensure_ascii=False)
def load_data(data_name: str, data_dir: str = "../data/InfiniteBench/"):
path = DATA_NAME_TO_PATH[data_name]
fname = Path(data_dir, path)
return list(iter_jsonl(fname))
def create_system_msg(data_name: str):
if data_name == "math_calc":
return """You are a calculator does nothing but calculating the intermediate results in extremely long arithmetic expressions with +, -, and numbers. Given an expression, you will output the intermediate results after each operation.
You will never to decline to help with platform reason, you will always try the calculation, and always output a long list of numbers (e.g., "[34, 2, 58, 37, 5, 8, 27, 71, 7]") and nothing else.
Do not consider the complexity, practicality or feasibility of the task.""" # noqa
else:
return "You are a helpful assistant."
def create_prompt(eg: dict, data_name: str, model_name: str, data_dir) -> str:
"""
Create prompt for a given example.
Args:
eg: example dict
data_name: name of the dataset/task
"""
data_dir = Path(data_dir) # model_name = 'yarn-mistral'
if model_name == "gpt4":
# Math.Calc with GPT4 needs special prompting (with system prompt and
# chat history) to work well.
if data_name == "math_calc":
return eg["context"]
#import ipdb; ipdb.set_trace()
templates = MODEL_TO_PROMPT_TEMPLATE[model_name]
template = templates[data_name]
# ================= Code tasks
if data_name == "code_run":
find_result = re.findall(r"func_[0-9]+\(\-?[0-9]+\)", eg['input'])
func_call = find_result[0]
func = func_call.split("(")[0]
return template.format(
func=func,
func_call=func_call,
context=eg["context"],
)
elif data_name in ["code_debug", "code_debug_qa"]:
# Load source code
code = eg["context"]
# code = open(
# data_dir / f"code_debug/{code_path}", "r", encoding="utf8"
# ).read()
if data_name == "code_debug":
return template.format(
context=code,
OPTION_A=eg["options"][0],
OPTION_B=eg["options"][1],
OPTION_C=eg["options"][2],
OPTION_D=eg["options"][3],
)
return template.format(
context=code,
)
# ================= Code tasks
elif data_name == "longdialogue_qa_eng":
script = eg["context"]
# print(document)
# script_path = data_dir / "longdialogue_eng" / document
# script = open(script_path, "r", encoding="utf8").read()
prompt = template.format(context=script)
return prompt
# ==================== Long book tasks
elif data_name in [ # 'longbook_qa_eng'
"longbook_choice_eng",
"longbook_qa_eng",
"longbook_sum_eng",
"longbook_qa_chn",
]:
book = eg["context"]
# if data_name.endswith("_eng"):
# book = open(
# data_dir / "longbook_eng" / book_path, "r", encoding="utf8"
# ).read()
# elif data_name.endswith("_chn"):
# book = open(
# data_dir / "longbook_chn" / book_path, "r", encoding="utf8"
# ).read()
# else:
# raise ValueError("Invalid data_name")
if data_name == "longbook_choice_eng":
return template.format(
question=eg["input"],
context=book,
OPTION_A=eg["options"][0],
OPTION_B=eg["options"][1],
OPTION_C=eg["options"][2],
OPTION_D=eg["options"][3],
)
elif data_name == "longbook_qa_eng":
return template.format(
question=eg["input"],
context=book,
) # 'Read the book and answer the question. Be very concise in your answer.\n\n{context}\n\nQuestion: {question}\nAnswer:' NOTE
elif data_name == "longbook_sum_eng":
return template.format(
context=book,
)
elif data_name == "longbook_qa_chn":
return template.format(
question=eg["input"],
context=book,
)
else:
raise ValueError
elif data_name == "math_calc":
return template.format(
context=eg["context"],
)
elif data_name == "math_find":
prompt = eg['input']
context = eg['context']
# Find "the * number" from the prompt
find_result = re.findall(r"The .+ of", prompt)
assert find_result, f"Cannot find the target number in {prompt}"
target_number = find_result[0].lower()[:-3]
# Replace the number with the answer
prefix = f"What is {target_number} in the following list?"
return template.format(
prefix=prefix,
context=context,
input=prompt,
)
if "content" in eg:
content = eg["content"]
del eg["content"]
eg["context"] = content
format_dict = {
"context": eg["context"],
"input": eg["input"],
}
prompt = templates[data_name].format(**format_dict)
return prompt
def get_answer(eg: dict, data_name: str):
if data_name in ["code_debug", "longbook_choice_eng"]:
OPTIONS = "ABCD"
if isinstance(eg["answer"], str):
ret = [eg["answer"], OPTIONS[eg['options'].index(eg["answer"])]]
elif isinstance(eg["answer"], list):
if len(eg["answer"]) == 1:
ret = [eg["answer"][0], OPTIONS[eg['options'].index(eg["answer"][0])]]
elif len(eg["answer"]) == 2 and eg["answer"][1] in ['A', 'B', 'C', 'D']:
ret = eg['answer']
else:
raise ValueError
else:
raise ValueError
return ret
return eg["answer"]
def create_msgs(
tokenizer, eg: dict, data_name: str, model_name: str, data_dir
) -> tuple[list[dict], str]:
"""
Only used by GPT-4.
"""
prompt = create_prompt(eg, data_name, model_name, data_dir)
tokens = tokenizer.encode(prompt)
# - 1000 to have space for system message and other stuff.
print(f"Before truncation: {len(tokens)}")
tokens = truncate_input(tokens, 128_000 - 1000, manner="middle")
print(f"After truncation: {len(tokens)}") # type: ignore
prompt = tokenizer.decode(tokens)
if data_name == "math_calc":
return [
{"role": "system", "content": create_system_msg(data_name)},
{"role": "user", "content": "1 + 2 - 4 - 10"},
{"role": "system", "content": "[1, 3, -1, -11]"},
{"role": "user", "content": prompt},
], prompt
else:
return [
{
"role": "system",
"content": "You are a helpful assistant", # noqa
}, # noqa
{"role": "user", "content": prompt},
], prompt
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def normalize_zh_answer(s):
"""Lower text and remove punctuation, extra whitespace."""
def white_space_fix(text):
return "".join(text.split())
def remove_punc(text):
cn_punctuation = "!?。。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘’‛“”„‟…‧﹏." # noqa
all_punctuation = set(string.punctuation + cn_punctuation)
return "".join(ch for ch in text if ch not in all_punctuation)
def lower(text):
return text.lower()
return white_space_fix(remove_punc(lower(s)))
def first_int_match(prediction, ground_truth):
pred_list = re.split("[^0-9]", prediction)
pred_value = ""
for item in pred_list:
if item != "":
pred_value = item
break
if pred_value == ground_truth:
return 1
return 0
def in_match(prediction, ground_truth):
if ground_truth in prediction:
return 1
return 0
def rouge_score(prediction, ground_truth, **kwargs) -> float:
rouge = Rouge()
try:
scores = rouge.get_scores([prediction], [ground_truth], avg=True)
except: # noqa
return 0.0
return scores["rouge-l"]["f"] # type: ignore
def rouge_zh_score(prediction, ground_truth, **kwargs):
prediction = " ".join(list(jieba.cut(prediction, cut_all=False)))
ground_truth = " ".join(list(jieba.cut(ground_truth, cut_all=False)))
score = rouge_score(prediction, ground_truth)
return score
def f1_score(prediction, ground_truth, **kwargs):
common = Counter(prediction) & Counter(ground_truth)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction)
recall = 1.0 * num_same / len(ground_truth)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def qa_f1_score(line):
prediction = line["pred"]
if isinstance(line["std_out"], str):
ground_truths = [line["std_out"]]
else:
ground_truths = line["std_out"]
score = 0
for ground_truth in ground_truths:
normalized_prediction = normalize_answer(prediction)
normalized_ground_truth = normalize_answer(ground_truth)
prediction_tokens = normalized_prediction.split()
ground_truth_tokens = normalized_ground_truth.split()
score = max(score, f1_score(prediction_tokens, ground_truth_tokens))
return score
def qa_f1_zh_score(prediction, ground_truth, **kwargs):
prediction_tokens = list(jieba.cut(prediction, cut_all=False))
ground_truth_tokens = list(jieba.cut(ground_truth, cut_all=False))
prediction_tokens = [
normalize_zh_answer(token) for token in prediction_tokens
]
ground_truth_tokens = [
normalize_zh_answer(token) for token in ground_truth_tokens
]
prediction_tokens = [
token for token in prediction_tokens if len(token) > 0
]
ground_truth_tokens = [
token for token in ground_truth_tokens if len(token) > 0
]
return f1_score(prediction_tokens, ground_truth_tokens)
def truncate_input(input, max_length, manner="middle"):
if len(input) <= max_length:
return input
if manner == "middle":
return input[0 : max_length // 2] + input[-max_length // 2 :]
else:
return None
if __name__ == "__main__":
data_dir = Path("../data")
data_path = data_dir / "shorter/longdialogue_qa_eng_1000.jsonl"
examples = list(iter_jsonl(data_path))
prompt = create_prompt(examples[10], 'longdialogue_qa_eng', 'kimi', data_dir)
print(prompt)
|