wasiuddina commited on
Commit
4d85299
·
verified ·
1 Parent(s): 02db9cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +191 -3
README.md CHANGED
@@ -1,3 +1,191 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ license_name: nvidia-open-model-license
5
+ license_link: >-
6
+ https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
7
+ pipeline_tag: text-generation
8
+ tags:
9
+ - nvidia
10
+ - pytorch
11
+ ---
12
+
13
+ # OpenCodeReasoning-Distill-Qwen-14B-Instruct
14
+
15
+ ## Model Overview
16
+
17
+ OpenCodeReasoning-Distill-Qwen-14B-Instruct is a large language model (LLM) which is a derivative of [Qwen2.5-14B-Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (AKA the *reference model*).
18
+ It is a reasoning model that is post trained for reasoning while code generation. The model supports a context length of 32K tokens.
19
+
20
+ This model is ready for commercial use.
21
+
22
+
23
+ ## License/Terms of Use
24
+
25
+ GOVERNING TERMS: Your use of this model is governed by the [NVIDIA Open Model License.](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/) Additional Information: [Llama 3.1 Community License Agreement](https://www.llama.com/llama3\_1/license/). Built with Qwen.
26
+
27
+ **Model Developer:** NVIDIA
28
+
29
+ **Model Dates:** Trained between February 2025 and March 2025
30
+
31
+
32
+ ### Use Case:
33
+ Developers designing AI-powered code generation applications. Also suitable for typical instruction-following tasks.
34
+
35
+ ## Release Date:
36
+
37
+ 2025-04-21
38
+
39
+ ## References
40
+
41
+ - [\[2504.01943\] OpenCodeReasoning: Advancing Data Distillation for Competitive Coding](https://arxiv.org/abs/2504.01943)
42
+
43
+ ## Model Architecture
44
+ - Architecture Type: Dense decoder-only Transformer model
45
+ - Network Architecture: Qwen
46
+
47
+ **This model was developed based on Qwen2.5-14B-Instruct. <br>
48
+ ** This model has 14B of model parameters. <br>
49
+
50
+ ## Intended use
51
+
52
+ OpenCodeReasoning-Distill-Qwen-14B-Instruct is a competitive code generation focused reasoning and chat model intended to be used in English.
53
+
54
+ ## Input
55
+ - **Input Type:** Text
56
+ - **Input Format:** String
57
+ - **Input Parameters:** One-Dimensional (1D)
58
+ - **Other Properties Related to Input:** Context length up to 32,768 tokens
59
+
60
+ ## Output
61
+ - **Output Type:** Text
62
+ - **Output Format:** String
63
+ - **Output Parameters:** One-Dimensional (1D)
64
+ - **Other Properties Related to Output:** Context length up to 32,768 tokens
65
+
66
+ ## Software Integration
67
+ - **Runtime Engine:** Transformers
68
+ - **Recommended Hardware Microarchitecture Compatibility:**
69
+ - NVIDIA Hopper
70
+ - NVIDIA Ampere
71
+ - **Preferred Operating System(s):** Linux
72
+
73
+ ## Model Version
74
+ 1.0 (4/21/2025)
75
+
76
+ ## Quick Start and Usage Recommendations:
77
+
78
+ We recommend setting temperature to `0.6`, and Top P to `0.95` for inference on LiveCodeBench.
79
+
80
+ ### Use It with Transformers
81
+ See the snippet below for usage with [Hugging Face Transformers](https://huggingface.co/docs/transformers/main/en/index) library. Please see the example below.
82
+
83
+ We recommend using the *transformers* package with version 4.48.3.
84
+ Example:
85
+
86
+ ```py
87
+ import torch
88
+ import transformers
89
+
90
+ model_id = "nvidia/OpenCodeReasoning-Distill-Qwen-14B-Instruct"
91
+ model_kwargs = {"torch_dtype": torch.bfloat16, "trust_remote_code": True, "device_map": "auto"}
92
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
93
+ tokenizer.pad_token_id = tokenizer.eos_token_id
94
+
95
+ pipeline = transformers.pipeline(
96
+ "text-generation",
97
+ model=model_id,
98
+ tokenizer=tokenizer,
99
+ max_new_tokens=32768,
100
+ temperature=0.6,
101
+ top_p=0.95,
102
+ **model_kwargs
103
+ )
104
+
105
+ print(pipeline([{"role": "user", "content": "Solve x*(sin(x)+2)=0"}]))
106
+ ```
107
+
108
+ ## Training and Evaluation Datasets
109
+
110
+ ## Training Datasets
111
+
112
+ This model is trained using [OpenCodeReasoning](https://huggingface.co/datasets/nvidia/OpenCodeReasoning) dataset.
113
+
114
+ **Data Collection for Training Datasets:**
115
+
116
+ - Hybrid: Automated, Human, Synthetic
117
+
118
+ **Data Labeling for Training Datasets:**
119
+
120
+ - Hybrid: Automated, Human, Synthetic
121
+
122
+ ## Evaluation Datasets
123
+
124
+ We used the datasets listed in the next section to evaluate Llama-3.1-Nemotron-Ultra-253B-v1.
125
+
126
+ Data Collection for Evaluation Datasets:
127
+
128
+ - Hybrid: Human/Synthetic
129
+
130
+ Data Labeling for Evaluation Datasets:
131
+
132
+ - Hybrid: Human/Synthetic/Automatic
133
+
134
+
135
+ ## Evaluation Results
136
+
137
+ ### LiveCodeBench (20240801-20250201)
138
+
139
+ | Models | Pass@1 |
140
+ |:--------------|:------------|
141
+ | R1-Distill-Qwen-14B | 53.1 |
142
+ | OpenCodeReasoning-Distill-Qwen-14B-Instruct | 59.4 |
143
+
144
+ User Prompt Template (without starter code):
145
+
146
+ ````
147
+ "You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests.
148
+
149
+ Question: {prompt}
150
+
151
+ Read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on the sample inputs). Enclose your code within delimiters as follows. Ensure that when the python program runs, it reads the inputs, runs the algorithm and writes output to STDOUT.
152
+ ```python
153
+ # YOUR CODE HERE
154
+ ```
155
+ ````
156
+
157
+ User Prompt Template (with starter code):
158
+
159
+ ````
160
+ You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests.
161
+
162
+ Question: {prompt}
163
+
164
+ You will use the following starter code to write the solution to the problem and enclose your code within delimiters.
165
+ ```python
166
+ {starter_code}
167
+ ```
168
+ ````
169
+
170
+ ## Ethical Considerations:
171
+
172
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications. When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
173
+
174
+ For more detailed information on ethical considerations for this model, please see the Model Card++ [Explainability](./EXPLAINABILITY.md), [Bias](./BIAS.md), [Safety & Security](./SAFETY_and_SECURITY.md), and [Privacy](./PRIVACY.md) Subcards.
175
+
176
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
177
+
178
+
179
+ ## Citation
180
+
181
+ If you find the data useful, please cite:
182
+ ```
183
+ @article{ahmad2025opencodereasoning,
184
+ title={OpenCodeReasoning: Advancing Data Distillation for Competitive Coding},
185
+ author={Wasi Uddin Ahmad, Sean Narenthiran, Somshubra Majumdar, Aleksander Ficek, Siddhartha Jain, Jocelyn Huang, Vahid Noroozi, Boris Ginsburg},
186
+ year={2025},
187
+ eprint={2504.01943},
188
+ archivePrefix={arXiv},
189
+ primaryClass={cs.CL},
190
+ url={https://arxiv.org/abs/2504.01943},
191
+ }