igitman commited on
Commit
9e1ca18
·
verified ·
1 Parent(s): c70aa6d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +113 -0
README.md CHANGED
@@ -1,3 +1,116 @@
1
  ---
2
  license: llama2
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
+ base_model:
4
+ - codellama/CodeLlama-13b-Python-hf
5
+ datasets:
6
+ - nvidia/OpenMathInstruct-1
7
+ language:
8
+ - en
9
+ tags:
10
+ - nvidia
11
+ - code
12
+ - math
13
  ---
14
+
15
+
16
+ # OpenMath-CodeLlama-13b-Python
17
+
18
+ OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks
19
+ executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1),
20
+ a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed
21
+ [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) model.
22
+
23
+ <table border="1">
24
+ <tr>
25
+ <td></td>
26
+ <td colspan="2" style="text-align: center;">greedy</td>
27
+ <td colspan="2" style="text-align: center;">majority@50</td>
28
+ </tr>
29
+ <tr>
30
+ <td style="text-align: center;">model</td>
31
+ <td style="text-align: center;">GSM8K</td>
32
+ <td style="text-align: center;">MATH</td>
33
+ <td style="text-align: center;">GMS8K</td>
34
+ <td style="text-align: center;">MATH</td>
35
+ </tr>
36
+ <tr>
37
+ <td style="text-align: right;">OpenMath-CodeLlama-7B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf">HF</a>)</td>
38
+ <td style="text-align: center;">75.9</td>
39
+ <td style="text-align: center;">43.6</td>
40
+ <td style="text-align: center;">84.8</td>
41
+ <td style="text-align: center;">55.6</td>
42
+ </tr>
43
+ <tr>
44
+ <td style="text-align: right;">OpenMath-Mistral-7B (<a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf">HF</a>)</td>
45
+ <td style="text-align: center;">80.2</td>
46
+ <td style="text-align: center;">44.5</td>
47
+ <td style="text-align: center;">86.9</td>
48
+ <td style="text-align: center;">57.2</td>
49
+ </tr>
50
+ <tr>
51
+ <td style="text-align: right;">OpenMath-CodeLlama-13B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf">HF</a>)</td>
52
+ <td style="text-align: center;">78.8</td>
53
+ <td style="text-align: center;">45.5</td>
54
+ <td style="text-align: center;">86.8</td>
55
+ <td style="text-align: center;">57.6</td>
56
+ </tr>
57
+ <tr>
58
+ <td style="text-align: right;">OpenMath-CodeLlama-34B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python-hf">HF</a>)</td>
59
+ <td style="text-align: center;">80.7</td>
60
+ <td style="text-align: center;">48.3</td>
61
+ <td style="text-align: center;">88.0</td>
62
+ <td style="text-align: center;">60.2</td>
63
+ </tr>
64
+ <tr>
65
+ <td style="text-align: right;">OpenMath-Llama2-70B (<a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b-hf">HF</a>)</td>
66
+ <td style="text-align: center;"><b>84.7</b></td>
67
+ <td style="text-align: center;">46.3</td>
68
+ <td style="text-align: center;">90.1</td>
69
+ <td style="text-align: center;">58.3</td>
70
+ </tr>
71
+ <tr>
72
+ <td style="text-align: right;">OpenMath-CodeLlama-70B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python-hf">HF</a>)</td>
73
+ <td style="text-align: center;">84.6</td>
74
+ <td style="text-align: center;"><b>50.7</b></td>
75
+ <td style="text-align: center;"><b>90.8</b></td>
76
+ <td style="text-align: center;"><b>60.4</b></td>
77
+ </tr>
78
+ </table>
79
+
80
+ The pipeline we used to produce these models is fully open-sourced!
81
+
82
+ - [Code](https://github.com/Kipok/NeMo-Skills)
83
+ - [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014)
84
+ - [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1)
85
+
86
+ # How to use the models?
87
+
88
+ Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands!
89
+
90
+ # Reproducing our results
91
+
92
+ We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results.
93
+
94
+ # Improving other models
95
+
96
+ To improve other models or to learn more about our code, read through the docs below.
97
+
98
+ - [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills)
99
+ - [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md)
100
+ - [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md)
101
+ - [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md)
102
+
103
+ In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/),
104
+ an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere.
105
+ It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models,
106
+ offering enterprises an easy, cost-effective, and fast way to adopt generative AI.
107
+
108
+ # Citation
109
+
110
+ If you find our work useful, please consider citing us!
111
+
112
+ TODO
113
+
114
+ # License
115
+
116
+ The use of this model is governed by the [Llama 2 Community License Agreement](https://ai.meta.com/llama/license/)