Diffusers
Safetensors
English
DifixPipeline
zhangjiewu commited on
Commit
4ddf818
·
verified ·
1 Parent(s): 7ac2b05

Upload folder using huggingface_hub

Browse files
model_index.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "DifixPipeline",
3
+ "_diffusers_version": "0.25.1",
4
+ "_name_or_path": "nvidia/difix_ref",
5
+ "feature_extractor": [
6
+ null,
7
+ null
8
+ ],
9
+ "image_encoder": [
10
+ null,
11
+ null
12
+ ],
13
+ "requires_safety_checker": true,
14
+ "safety_checker": [
15
+ null,
16
+ null
17
+ ],
18
+ "scheduler": [
19
+ "diffusers",
20
+ "DDPMScheduler"
21
+ ],
22
+ "text_encoder": [
23
+ "transformers",
24
+ "CLIPTextModel"
25
+ ],
26
+ "tokenizer": [
27
+ "transformers",
28
+ "CLIPTokenizer"
29
+ ],
30
+ "unet": [
31
+ "unet_2d_condition",
32
+ "UNet2DConditionModel"
33
+ ],
34
+ "vae": [
35
+ "autoencoder_kl",
36
+ "AutoencoderKL"
37
+ ]
38
+ }
scheduler/scheduler_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "DDPMScheduler",
3
+ "_diffusers_version": "0.25.1",
4
+ "beta_end": 0.012,
5
+ "beta_schedule": "scaled_linear",
6
+ "beta_start": 0.00085,
7
+ "clip_sample": false,
8
+ "clip_sample_range": 1.0,
9
+ "dynamic_thresholding_ratio": 0.995,
10
+ "interpolation_type": "linear",
11
+ "num_train_timesteps": 1000,
12
+ "prediction_type": "epsilon",
13
+ "rescale_betas_zero_snr": false,
14
+ "sample_max_value": 1.0,
15
+ "set_alpha_to_one": false,
16
+ "sigma_max": null,
17
+ "sigma_min": null,
18
+ "skip_prk_steps": true,
19
+ "steps_offset": 1,
20
+ "thresholding": false,
21
+ "timestep_spacing": "trailing",
22
+ "timestep_type": "discrete",
23
+ "trained_betas": null,
24
+ "use_karras_sigmas": false,
25
+ "variance_type": "fixed_small"
26
+ }
text_encoder/config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/difix_ref/text_encoder",
3
+ "architectures": [
4
+ "CLIPTextModel"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 0,
8
+ "dropout": 0.0,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_size": 1024,
12
+ "initializer_factor": 1.0,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 77,
17
+ "model_type": "clip_text_model",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 23,
20
+ "pad_token_id": 1,
21
+ "projection_dim": 512,
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.48.3",
24
+ "vocab_size": 49408
25
+ }
text_encoder/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67e013543d4fac905c882e2993d86a2d454ee69dc9e8f37c0c23d33a48959d15
3
+ size 1361596304
tokenizer/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "!",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "!",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "49406": {
13
+ "content": "<|startoftext|>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "49407": {
21
+ "content": "<|endoftext|>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "bos_token": "<|startoftext|>",
30
+ "clean_up_tokenization_spaces": true,
31
+ "do_lower_case": true,
32
+ "eos_token": "<|endoftext|>",
33
+ "errors": "replace",
34
+ "extra_special_tokens": {},
35
+ "model_max_length": 77,
36
+ "pad_token": "!",
37
+ "tokenizer_class": "CLIPTokenizer",
38
+ "unk_token": "<|endoftext|>"
39
+ }
tokenizer/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
unet/config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "UNet2DConditionModel",
3
+ "_diffusers_version": "0.25.1",
4
+ "_name_or_path": "nvidia/difix_ref/unet",
5
+ "act_fn": "silu",
6
+ "addition_embed_type": null,
7
+ "addition_embed_type_num_heads": 64,
8
+ "addition_time_embed_dim": null,
9
+ "attention_head_dim": [
10
+ 5,
11
+ 10,
12
+ 20,
13
+ 20
14
+ ],
15
+ "attention_type": "default",
16
+ "block_out_channels": [
17
+ 320,
18
+ 640,
19
+ 1280,
20
+ 1280
21
+ ],
22
+ "center_input_sample": false,
23
+ "class_embed_type": null,
24
+ "class_embeddings_concat": false,
25
+ "conv_in_kernel": 3,
26
+ "conv_out_kernel": 3,
27
+ "cross_attention_dim": 1024,
28
+ "cross_attention_norm": null,
29
+ "down_block_types": [
30
+ "CrossAttnDownBlock2D",
31
+ "CrossAttnDownBlock2D",
32
+ "CrossAttnDownBlock2D",
33
+ "DownBlock2D"
34
+ ],
35
+ "downsample_padding": 1,
36
+ "dropout": 0.0,
37
+ "dual_cross_attention": false,
38
+ "encoder_hid_dim": null,
39
+ "encoder_hid_dim_type": null,
40
+ "flip_sin_to_cos": true,
41
+ "freq_shift": 0,
42
+ "in_channels": 4,
43
+ "layers_per_block": 2,
44
+ "mid_block_only_cross_attention": null,
45
+ "mid_block_scale_factor": 1,
46
+ "mid_block_type": "UNetMidBlock2DCrossAttn",
47
+ "norm_eps": 1e-05,
48
+ "norm_num_groups": 32,
49
+ "num_attention_heads": null,
50
+ "num_class_embeds": null,
51
+ "only_cross_attention": false,
52
+ "out_channels": 4,
53
+ "projection_class_embeddings_input_dim": null,
54
+ "resnet_out_scale_factor": 1.0,
55
+ "resnet_skip_time_act": false,
56
+ "resnet_time_scale_shift": "default",
57
+ "reverse_transformer_layers_per_block": null,
58
+ "sample_size": 64,
59
+ "time_cond_proj_dim": null,
60
+ "time_embedding_act_fn": null,
61
+ "time_embedding_dim": null,
62
+ "time_embedding_type": "positional",
63
+ "timestep_post_act": null,
64
+ "transformer_layers_per_block": 1,
65
+ "up_block_types": [
66
+ "UpBlock2D",
67
+ "CrossAttnUpBlock2D",
68
+ "CrossAttnUpBlock2D",
69
+ "CrossAttnUpBlock2D"
70
+ ],
71
+ "upcast_attention": null,
72
+ "use_linear_projection": true
73
+ }
unet/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf723d40f29c6915b6ac2aac3c1dab4fe685afe35a41e725ad63a34124c0ec46
3
+ size 3463726504
unet/unet_2d_condition.py ADDED
@@ -0,0 +1,1343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.utils.checkpoint
20
+
21
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
22
+ from diffusers.loaders import UNet2DConditionLoadersMixin
23
+ from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
24
+ from diffusers.models.activations import get_activation
25
+ from diffusers.models.attention_processor import (
26
+ ADDED_KV_ATTENTION_PROCESSORS,
27
+ CROSS_ATTENTION_PROCESSORS,
28
+ Attention,
29
+ AttentionProcessor,
30
+ AttnAddedKVProcessor,
31
+ AttnProcessor,
32
+ )
33
+ from diffusers.models.embeddings import (
34
+ GaussianFourierProjection,
35
+ ImageHintTimeEmbedding,
36
+ ImageProjection,
37
+ ImageTimeEmbedding,
38
+ PositionNet,
39
+ TextImageProjection,
40
+ TextImageTimeEmbedding,
41
+ TextTimeEmbedding,
42
+ TimestepEmbedding,
43
+ Timesteps,
44
+ )
45
+ from diffusers.models.modeling_utils import ModelMixin
46
+ from diffusers.models.unet_2d_blocks import (
47
+ UNetMidBlock2D,
48
+ UNetMidBlock2DCrossAttn,
49
+ UNetMidBlock2DSimpleCrossAttn,
50
+ get_down_block,
51
+ get_up_block,
52
+ )
53
+
54
+
55
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
56
+
57
+
58
+ from diffusers.models.attention import BasicTransformerBlock, _chunked_feed_forward
59
+ from einops import rearrange
60
+
61
+ def new_forward(
62
+ self,
63
+ hidden_states: torch.FloatTensor,
64
+ attention_mask: Optional[torch.FloatTensor] = None,
65
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
66
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
67
+ timestep: Optional[torch.LongTensor] = None,
68
+ cross_attention_kwargs: Dict[str, Any] = None,
69
+ class_labels: Optional[torch.LongTensor] = None,
70
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
71
+ ) -> torch.FloatTensor:
72
+ # Notice that normalization is always applied before the real computation in the following blocks.
73
+ # 0. Self-Attention
74
+
75
+ num_views = 2 # Assuming 2 views for simplicity, can be parameterized later
76
+ hidden_states = rearrange(hidden_states, "(b v) n d -> b (v n) d", v=num_views)
77
+ batch_size = hidden_states.shape[0]
78
+
79
+ if self.use_ada_layer_norm:
80
+ norm_hidden_states = self.norm1(hidden_states, timestep)
81
+ elif self.use_ada_layer_norm_zero:
82
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
83
+ hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
84
+ )
85
+ elif self.use_layer_norm:
86
+ norm_hidden_states = self.norm1(hidden_states)
87
+ elif self.use_ada_layer_norm_continuous:
88
+ norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
89
+ elif self.use_ada_layer_norm_single:
90
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
91
+ self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
92
+ ).chunk(6, dim=1)
93
+ norm_hidden_states = self.norm1(hidden_states)
94
+ norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
95
+ norm_hidden_states = norm_hidden_states.squeeze(1)
96
+ else:
97
+ raise ValueError("Incorrect norm used")
98
+
99
+ if self.pos_embed is not None:
100
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
101
+
102
+ # 1. Retrieve lora scale.
103
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
104
+
105
+ # 2. Prepare GLIGEN inputs
106
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
107
+ gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
108
+
109
+ attn_output = self.attn1(
110
+ norm_hidden_states,
111
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
112
+ attention_mask=attention_mask,
113
+ **cross_attention_kwargs,
114
+ )
115
+ if self.use_ada_layer_norm_zero:
116
+ attn_output = gate_msa.unsqueeze(1) * attn_output
117
+ elif self.use_ada_layer_norm_single:
118
+ attn_output = gate_msa * attn_output
119
+
120
+ hidden_states = attn_output + hidden_states
121
+ if hidden_states.ndim == 4:
122
+ hidden_states = hidden_states.squeeze(1)
123
+
124
+ # 2.5 GLIGEN Control
125
+ if gligen_kwargs is not None:
126
+ hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
127
+
128
+ hidden_states = rearrange(hidden_states, "b (v n) d -> (b v) n d", v=num_views)
129
+
130
+ # 3. Cross-Attention
131
+ if self.attn2 is not None:
132
+ if self.use_ada_layer_norm:
133
+ norm_hidden_states = self.norm2(hidden_states, timestep)
134
+ elif self.use_ada_layer_norm_zero or self.use_layer_norm:
135
+ norm_hidden_states = self.norm2(hidden_states)
136
+ elif self.use_ada_layer_norm_single:
137
+ # For PixArt norm2 isn't applied here:
138
+ # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
139
+ norm_hidden_states = hidden_states
140
+ elif self.use_ada_layer_norm_continuous:
141
+ norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
142
+ else:
143
+ raise ValueError("Incorrect norm")
144
+
145
+ if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
146
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
147
+
148
+ attn_output = self.attn2(
149
+ norm_hidden_states,
150
+ encoder_hidden_states=encoder_hidden_states,
151
+ attention_mask=encoder_attention_mask,
152
+ **cross_attention_kwargs,
153
+ )
154
+ hidden_states = attn_output + hidden_states
155
+
156
+ # 4. Feed-forward
157
+ if self.use_ada_layer_norm_continuous:
158
+ norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
159
+ elif not self.use_ada_layer_norm_single:
160
+ norm_hidden_states = self.norm3(hidden_states)
161
+
162
+ if self.use_ada_layer_norm_zero:
163
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
164
+
165
+ if self.use_ada_layer_norm_single:
166
+ norm_hidden_states = self.norm2(hidden_states)
167
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
168
+
169
+ if self._chunk_size is not None:
170
+ # "feed_forward_chunk_size" can be used to save memory
171
+ ff_output = _chunked_feed_forward(
172
+ self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
173
+ )
174
+ else:
175
+ ff_output = self.ff(norm_hidden_states, scale=lora_scale)
176
+
177
+ if self.use_ada_layer_norm_zero:
178
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
179
+ elif self.use_ada_layer_norm_single:
180
+ ff_output = gate_mlp * ff_output
181
+
182
+ hidden_states = ff_output + hidden_states
183
+ if hidden_states.ndim == 4:
184
+ hidden_states = hidden_states.squeeze(1)
185
+
186
+ return hidden_states
187
+
188
+ # Monkey-patch the class
189
+ BasicTransformerBlock.forward = new_forward
190
+
191
+
192
+ @dataclass
193
+ class UNet2DConditionOutput(BaseOutput):
194
+ """
195
+ The output of [`UNet2DConditionModel`].
196
+
197
+ Args:
198
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
199
+ The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
200
+ """
201
+
202
+ sample: torch.FloatTensor = None
203
+
204
+
205
+ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
206
+ r"""
207
+ A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
208
+ shaped output.
209
+
210
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
211
+ for all models (such as downloading or saving).
212
+
213
+ Parameters:
214
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
215
+ Height and width of input/output sample.
216
+ in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
217
+ out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
218
+ center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
219
+ flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
220
+ Whether to flip the sin to cos in the time embedding.
221
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
222
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
223
+ The tuple of downsample blocks to use.
224
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
225
+ Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
226
+ `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
227
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
228
+ The tuple of upsample blocks to use.
229
+ only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
230
+ Whether to include self-attention in the basic transformer blocks, see
231
+ [`~models.attention.BasicTransformerBlock`].
232
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
233
+ The tuple of output channels for each block.
234
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
235
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
236
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
237
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
238
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
239
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
240
+ If `None`, normalization and activation layers is skipped in post-processing.
241
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
242
+ cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
243
+ The dimension of the cross attention features.
244
+ transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
245
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
246
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
247
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
248
+ reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
249
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
250
+ blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
251
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
252
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
253
+ encoder_hid_dim (`int`, *optional*, defaults to None):
254
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
255
+ dimension to `cross_attention_dim`.
256
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
257
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
258
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
259
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
260
+ num_attention_heads (`int`, *optional*):
261
+ The number of attention heads. If not defined, defaults to `attention_head_dim`
262
+ resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
263
+ for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
264
+ class_embed_type (`str`, *optional*, defaults to `None`):
265
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
266
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
267
+ addition_embed_type (`str`, *optional*, defaults to `None`):
268
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
269
+ "text". "text" will use the `TextTimeEmbedding` layer.
270
+ addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
271
+ Dimension for the timestep embeddings.
272
+ num_class_embeds (`int`, *optional*, defaults to `None`):
273
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
274
+ class conditioning with `class_embed_type` equal to `None`.
275
+ time_embedding_type (`str`, *optional*, defaults to `positional`):
276
+ The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
277
+ time_embedding_dim (`int`, *optional*, defaults to `None`):
278
+ An optional override for the dimension of the projected time embedding.
279
+ time_embedding_act_fn (`str`, *optional*, defaults to `None`):
280
+ Optional activation function to use only once on the time embeddings before they are passed to the rest of
281
+ the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
282
+ timestep_post_act (`str`, *optional*, defaults to `None`):
283
+ The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
284
+ time_cond_proj_dim (`int`, *optional*, defaults to `None`):
285
+ The dimension of `cond_proj` layer in the timestep embedding.
286
+ conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
287
+ *optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
288
+ *optional*): The dimension of the `class_labels` input when
289
+ `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
290
+ class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
291
+ embeddings with the class embeddings.
292
+ mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
293
+ Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
294
+ `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
295
+ `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
296
+ otherwise.
297
+ """
298
+
299
+ _supports_gradient_checkpointing = True
300
+
301
+ @register_to_config
302
+ def __init__(
303
+ self,
304
+ sample_size: Optional[int] = None,
305
+ in_channels: int = 4,
306
+ out_channels: int = 4,
307
+ center_input_sample: bool = False,
308
+ flip_sin_to_cos: bool = True,
309
+ freq_shift: int = 0,
310
+ down_block_types: Tuple[str] = (
311
+ "CrossAttnDownBlock2D",
312
+ "CrossAttnDownBlock2D",
313
+ "CrossAttnDownBlock2D",
314
+ "DownBlock2D",
315
+ ),
316
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
317
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
318
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
319
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
320
+ layers_per_block: Union[int, Tuple[int]] = 2,
321
+ downsample_padding: int = 1,
322
+ mid_block_scale_factor: float = 1,
323
+ dropout: float = 0.0,
324
+ act_fn: str = "silu",
325
+ norm_num_groups: Optional[int] = 32,
326
+ norm_eps: float = 1e-5,
327
+ cross_attention_dim: Union[int, Tuple[int]] = 1280,
328
+ transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
329
+ reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
330
+ encoder_hid_dim: Optional[int] = None,
331
+ encoder_hid_dim_type: Optional[str] = None,
332
+ attention_head_dim: Union[int, Tuple[int]] = 8,
333
+ num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
334
+ dual_cross_attention: bool = False,
335
+ use_linear_projection: bool = False,
336
+ class_embed_type: Optional[str] = None,
337
+ addition_embed_type: Optional[str] = None,
338
+ addition_time_embed_dim: Optional[int] = None,
339
+ num_class_embeds: Optional[int] = None,
340
+ upcast_attention: bool = False,
341
+ resnet_time_scale_shift: str = "default",
342
+ resnet_skip_time_act: bool = False,
343
+ resnet_out_scale_factor: int = 1.0,
344
+ time_embedding_type: str = "positional",
345
+ time_embedding_dim: Optional[int] = None,
346
+ time_embedding_act_fn: Optional[str] = None,
347
+ timestep_post_act: Optional[str] = None,
348
+ time_cond_proj_dim: Optional[int] = None,
349
+ conv_in_kernel: int = 3,
350
+ conv_out_kernel: int = 3,
351
+ projection_class_embeddings_input_dim: Optional[int] = None,
352
+ attention_type: str = "default",
353
+ class_embeddings_concat: bool = False,
354
+ mid_block_only_cross_attention: Optional[bool] = None,
355
+ cross_attention_norm: Optional[str] = None,
356
+ addition_embed_type_num_heads=64,
357
+ ):
358
+ super().__init__()
359
+
360
+ self.sample_size = sample_size
361
+
362
+ if num_attention_heads is not None:
363
+ raise ValueError(
364
+ "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
365
+ )
366
+
367
+ # If `num_attention_heads` is not defined (which is the case for most models)
368
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
369
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
370
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
371
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
372
+ # which is why we correct for the naming here.
373
+ num_attention_heads = num_attention_heads or attention_head_dim
374
+
375
+ # Check inputs
376
+ if len(down_block_types) != len(up_block_types):
377
+ raise ValueError(
378
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
379
+ )
380
+
381
+ if len(block_out_channels) != len(down_block_types):
382
+ raise ValueError(
383
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
384
+ )
385
+
386
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
387
+ raise ValueError(
388
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
389
+ )
390
+
391
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
392
+ raise ValueError(
393
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
394
+ )
395
+
396
+ if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
397
+ raise ValueError(
398
+ f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
399
+ )
400
+
401
+ if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
402
+ raise ValueError(
403
+ f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
404
+ )
405
+
406
+ if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
407
+ raise ValueError(
408
+ f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
409
+ )
410
+ if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
411
+ for layer_number_per_block in transformer_layers_per_block:
412
+ if isinstance(layer_number_per_block, list):
413
+ raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
414
+
415
+ # input
416
+ conv_in_padding = (conv_in_kernel - 1) // 2
417
+ self.conv_in = nn.Conv2d(
418
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
419
+ )
420
+
421
+ # time
422
+ if time_embedding_type == "fourier":
423
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
424
+ if time_embed_dim % 2 != 0:
425
+ raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
426
+ self.time_proj = GaussianFourierProjection(
427
+ time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
428
+ )
429
+ timestep_input_dim = time_embed_dim
430
+ elif time_embedding_type == "positional":
431
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
432
+
433
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
434
+ timestep_input_dim = block_out_channels[0]
435
+ else:
436
+ raise ValueError(
437
+ f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
438
+ )
439
+
440
+ self.time_embedding = TimestepEmbedding(
441
+ timestep_input_dim,
442
+ time_embed_dim,
443
+ act_fn=act_fn,
444
+ post_act_fn=timestep_post_act,
445
+ cond_proj_dim=time_cond_proj_dim,
446
+ )
447
+
448
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
449
+ encoder_hid_dim_type = "text_proj"
450
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
451
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
452
+
453
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
454
+ raise ValueError(
455
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
456
+ )
457
+
458
+ if encoder_hid_dim_type == "text_proj":
459
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
460
+ elif encoder_hid_dim_type == "text_image_proj":
461
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
462
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
463
+ # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
464
+ self.encoder_hid_proj = TextImageProjection(
465
+ text_embed_dim=encoder_hid_dim,
466
+ image_embed_dim=cross_attention_dim,
467
+ cross_attention_dim=cross_attention_dim,
468
+ )
469
+ elif encoder_hid_dim_type == "image_proj":
470
+ # Kandinsky 2.2
471
+ self.encoder_hid_proj = ImageProjection(
472
+ image_embed_dim=encoder_hid_dim,
473
+ cross_attention_dim=cross_attention_dim,
474
+ )
475
+ elif encoder_hid_dim_type is not None:
476
+ raise ValueError(
477
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
478
+ )
479
+ else:
480
+ self.encoder_hid_proj = None
481
+
482
+ # class embedding
483
+ if class_embed_type is None and num_class_embeds is not None:
484
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
485
+ elif class_embed_type == "timestep":
486
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
487
+ elif class_embed_type == "identity":
488
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
489
+ elif class_embed_type == "projection":
490
+ if projection_class_embeddings_input_dim is None:
491
+ raise ValueError(
492
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
493
+ )
494
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
495
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
496
+ # 2. it projects from an arbitrary input dimension.
497
+ #
498
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
499
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
500
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
501
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
502
+ elif class_embed_type == "simple_projection":
503
+ if projection_class_embeddings_input_dim is None:
504
+ raise ValueError(
505
+ "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
506
+ )
507
+ self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
508
+ else:
509
+ self.class_embedding = None
510
+
511
+ if addition_embed_type == "text":
512
+ if encoder_hid_dim is not None:
513
+ text_time_embedding_from_dim = encoder_hid_dim
514
+ else:
515
+ text_time_embedding_from_dim = cross_attention_dim
516
+
517
+ self.add_embedding = TextTimeEmbedding(
518
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
519
+ )
520
+ elif addition_embed_type == "text_image":
521
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
522
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
523
+ # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
524
+ self.add_embedding = TextImageTimeEmbedding(
525
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
526
+ )
527
+ elif addition_embed_type == "text_time":
528
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
529
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
530
+ elif addition_embed_type == "image":
531
+ # Kandinsky 2.2
532
+ self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
533
+ elif addition_embed_type == "image_hint":
534
+ # Kandinsky 2.2 ControlNet
535
+ self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
536
+ elif addition_embed_type is not None:
537
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
538
+
539
+ if time_embedding_act_fn is None:
540
+ self.time_embed_act = None
541
+ else:
542
+ self.time_embed_act = get_activation(time_embedding_act_fn)
543
+
544
+ self.down_blocks = nn.ModuleList([])
545
+ self.up_blocks = nn.ModuleList([])
546
+
547
+ if isinstance(only_cross_attention, bool):
548
+ if mid_block_only_cross_attention is None:
549
+ mid_block_only_cross_attention = only_cross_attention
550
+
551
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
552
+
553
+ if mid_block_only_cross_attention is None:
554
+ mid_block_only_cross_attention = False
555
+
556
+ if isinstance(num_attention_heads, int):
557
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
558
+
559
+ if isinstance(attention_head_dim, int):
560
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
561
+
562
+ if isinstance(cross_attention_dim, int):
563
+ cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
564
+
565
+ if isinstance(layers_per_block, int):
566
+ layers_per_block = [layers_per_block] * len(down_block_types)
567
+
568
+ if isinstance(transformer_layers_per_block, int):
569
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
570
+
571
+ if class_embeddings_concat:
572
+ # The time embeddings are concatenated with the class embeddings. The dimension of the
573
+ # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
574
+ # regular time embeddings
575
+ blocks_time_embed_dim = time_embed_dim * 2
576
+ else:
577
+ blocks_time_embed_dim = time_embed_dim
578
+
579
+ # down
580
+ output_channel = block_out_channels[0]
581
+ for i, down_block_type in enumerate(down_block_types):
582
+ input_channel = output_channel
583
+ output_channel = block_out_channels[i]
584
+ is_final_block = i == len(block_out_channels) - 1
585
+
586
+ down_block = get_down_block(
587
+ down_block_type,
588
+ num_layers=layers_per_block[i],
589
+ transformer_layers_per_block=transformer_layers_per_block[i],
590
+ in_channels=input_channel,
591
+ out_channels=output_channel,
592
+ temb_channels=blocks_time_embed_dim,
593
+ add_downsample=not is_final_block,
594
+ resnet_eps=norm_eps,
595
+ resnet_act_fn=act_fn,
596
+ resnet_groups=norm_num_groups,
597
+ cross_attention_dim=cross_attention_dim[i],
598
+ num_attention_heads=num_attention_heads[i],
599
+ downsample_padding=downsample_padding,
600
+ dual_cross_attention=dual_cross_attention,
601
+ use_linear_projection=use_linear_projection,
602
+ only_cross_attention=only_cross_attention[i],
603
+ upcast_attention=upcast_attention,
604
+ resnet_time_scale_shift=resnet_time_scale_shift,
605
+ attention_type=attention_type,
606
+ resnet_skip_time_act=resnet_skip_time_act,
607
+ resnet_out_scale_factor=resnet_out_scale_factor,
608
+ cross_attention_norm=cross_attention_norm,
609
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
610
+ dropout=dropout,
611
+ )
612
+ self.down_blocks.append(down_block)
613
+
614
+ # mid
615
+ if mid_block_type == "UNetMidBlock2DCrossAttn":
616
+ self.mid_block = UNetMidBlock2DCrossAttn(
617
+ transformer_layers_per_block=transformer_layers_per_block[-1],
618
+ in_channels=block_out_channels[-1],
619
+ temb_channels=blocks_time_embed_dim,
620
+ dropout=dropout,
621
+ resnet_eps=norm_eps,
622
+ resnet_act_fn=act_fn,
623
+ output_scale_factor=mid_block_scale_factor,
624
+ resnet_time_scale_shift=resnet_time_scale_shift,
625
+ cross_attention_dim=cross_attention_dim[-1],
626
+ num_attention_heads=num_attention_heads[-1],
627
+ resnet_groups=norm_num_groups,
628
+ dual_cross_attention=dual_cross_attention,
629
+ use_linear_projection=use_linear_projection,
630
+ upcast_attention=upcast_attention,
631
+ attention_type=attention_type,
632
+ )
633
+ elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
634
+ self.mid_block = UNetMidBlock2DSimpleCrossAttn(
635
+ in_channels=block_out_channels[-1],
636
+ temb_channels=blocks_time_embed_dim,
637
+ dropout=dropout,
638
+ resnet_eps=norm_eps,
639
+ resnet_act_fn=act_fn,
640
+ output_scale_factor=mid_block_scale_factor,
641
+ cross_attention_dim=cross_attention_dim[-1],
642
+ attention_head_dim=attention_head_dim[-1],
643
+ resnet_groups=norm_num_groups,
644
+ resnet_time_scale_shift=resnet_time_scale_shift,
645
+ skip_time_act=resnet_skip_time_act,
646
+ only_cross_attention=mid_block_only_cross_attention,
647
+ cross_attention_norm=cross_attention_norm,
648
+ )
649
+ elif mid_block_type == "UNetMidBlock2D":
650
+ self.mid_block = UNetMidBlock2D(
651
+ in_channels=block_out_channels[-1],
652
+ temb_channels=blocks_time_embed_dim,
653
+ dropout=dropout,
654
+ num_layers=0,
655
+ resnet_eps=norm_eps,
656
+ resnet_act_fn=act_fn,
657
+ output_scale_factor=mid_block_scale_factor,
658
+ resnet_groups=norm_num_groups,
659
+ resnet_time_scale_shift=resnet_time_scale_shift,
660
+ add_attention=False,
661
+ )
662
+ elif mid_block_type is None:
663
+ self.mid_block = None
664
+ else:
665
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
666
+
667
+ # count how many layers upsample the images
668
+ self.num_upsamplers = 0
669
+
670
+ # up
671
+ reversed_block_out_channels = list(reversed(block_out_channels))
672
+ reversed_num_attention_heads = list(reversed(num_attention_heads))
673
+ reversed_layers_per_block = list(reversed(layers_per_block))
674
+ reversed_cross_attention_dim = list(reversed(cross_attention_dim))
675
+ reversed_transformer_layers_per_block = (
676
+ list(reversed(transformer_layers_per_block))
677
+ if reverse_transformer_layers_per_block is None
678
+ else reverse_transformer_layers_per_block
679
+ )
680
+ only_cross_attention = list(reversed(only_cross_attention))
681
+
682
+ output_channel = reversed_block_out_channels[0]
683
+ for i, up_block_type in enumerate(up_block_types):
684
+ is_final_block = i == len(block_out_channels) - 1
685
+
686
+ prev_output_channel = output_channel
687
+ output_channel = reversed_block_out_channels[i]
688
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
689
+
690
+ # add upsample block for all BUT final layer
691
+ if not is_final_block:
692
+ add_upsample = True
693
+ self.num_upsamplers += 1
694
+ else:
695
+ add_upsample = False
696
+
697
+ up_block = get_up_block(
698
+ up_block_type,
699
+ num_layers=reversed_layers_per_block[i] + 1,
700
+ transformer_layers_per_block=reversed_transformer_layers_per_block[i],
701
+ in_channels=input_channel,
702
+ out_channels=output_channel,
703
+ prev_output_channel=prev_output_channel,
704
+ temb_channels=blocks_time_embed_dim,
705
+ add_upsample=add_upsample,
706
+ resnet_eps=norm_eps,
707
+ resnet_act_fn=act_fn,
708
+ resolution_idx=i,
709
+ resnet_groups=norm_num_groups,
710
+ cross_attention_dim=reversed_cross_attention_dim[i],
711
+ num_attention_heads=reversed_num_attention_heads[i],
712
+ dual_cross_attention=dual_cross_attention,
713
+ use_linear_projection=use_linear_projection,
714
+ only_cross_attention=only_cross_attention[i],
715
+ upcast_attention=upcast_attention,
716
+ resnet_time_scale_shift=resnet_time_scale_shift,
717
+ attention_type=attention_type,
718
+ resnet_skip_time_act=resnet_skip_time_act,
719
+ resnet_out_scale_factor=resnet_out_scale_factor,
720
+ cross_attention_norm=cross_attention_norm,
721
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
722
+ dropout=dropout,
723
+ )
724
+ self.up_blocks.append(up_block)
725
+ prev_output_channel = output_channel
726
+
727
+ # out
728
+ if norm_num_groups is not None:
729
+ self.conv_norm_out = nn.GroupNorm(
730
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
731
+ )
732
+
733
+ self.conv_act = get_activation(act_fn)
734
+
735
+ else:
736
+ self.conv_norm_out = None
737
+ self.conv_act = None
738
+
739
+ conv_out_padding = (conv_out_kernel - 1) // 2
740
+ self.conv_out = nn.Conv2d(
741
+ block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
742
+ )
743
+
744
+ if attention_type in ["gated", "gated-text-image"]:
745
+ positive_len = 768
746
+ if isinstance(cross_attention_dim, int):
747
+ positive_len = cross_attention_dim
748
+ elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
749
+ positive_len = cross_attention_dim[0]
750
+
751
+ feature_type = "text-only" if attention_type == "gated" else "text-image"
752
+ self.position_net = PositionNet(
753
+ positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
754
+ )
755
+
756
+ @property
757
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
758
+ r"""
759
+ Returns:
760
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
761
+ indexed by its weight name.
762
+ """
763
+ # set recursively
764
+ processors = {}
765
+
766
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
767
+ if hasattr(module, "get_processor"):
768
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
769
+
770
+ for sub_name, child in module.named_children():
771
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
772
+
773
+ return processors
774
+
775
+ for name, module in self.named_children():
776
+ fn_recursive_add_processors(name, module, processors)
777
+
778
+ return processors
779
+
780
+ def set_attn_processor(
781
+ self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
782
+ ):
783
+ r"""
784
+ Sets the attention processor to use to compute attention.
785
+
786
+ Parameters:
787
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
788
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
789
+ for **all** `Attention` layers.
790
+
791
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
792
+ processor. This is strongly recommended when setting trainable attention processors.
793
+
794
+ """
795
+ count = len(self.attn_processors.keys())
796
+
797
+ if isinstance(processor, dict) and len(processor) != count:
798
+ raise ValueError(
799
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
800
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
801
+ )
802
+
803
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
804
+ if hasattr(module, "set_processor"):
805
+ if not isinstance(processor, dict):
806
+ module.set_processor(processor, _remove_lora=_remove_lora)
807
+ else:
808
+ module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
809
+
810
+ for sub_name, child in module.named_children():
811
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
812
+
813
+ for name, module in self.named_children():
814
+ fn_recursive_attn_processor(name, module, processor)
815
+
816
+ def set_default_attn_processor(self):
817
+ """
818
+ Disables custom attention processors and sets the default attention implementation.
819
+ """
820
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
821
+ processor = AttnAddedKVProcessor()
822
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
823
+ processor = AttnProcessor()
824
+ else:
825
+ raise ValueError(
826
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
827
+ )
828
+
829
+ self.set_attn_processor(processor, _remove_lora=True)
830
+
831
+ def set_attention_slice(self, slice_size):
832
+ r"""
833
+ Enable sliced attention computation.
834
+
835
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
836
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
837
+
838
+ Args:
839
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
840
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
841
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
842
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
843
+ must be a multiple of `slice_size`.
844
+ """
845
+ sliceable_head_dims = []
846
+
847
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
848
+ if hasattr(module, "set_attention_slice"):
849
+ sliceable_head_dims.append(module.sliceable_head_dim)
850
+
851
+ for child in module.children():
852
+ fn_recursive_retrieve_sliceable_dims(child)
853
+
854
+ # retrieve number of attention layers
855
+ for module in self.children():
856
+ fn_recursive_retrieve_sliceable_dims(module)
857
+
858
+ num_sliceable_layers = len(sliceable_head_dims)
859
+
860
+ if slice_size == "auto":
861
+ # half the attention head size is usually a good trade-off between
862
+ # speed and memory
863
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
864
+ elif slice_size == "max":
865
+ # make smallest slice possible
866
+ slice_size = num_sliceable_layers * [1]
867
+
868
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
869
+
870
+ if len(slice_size) != len(sliceable_head_dims):
871
+ raise ValueError(
872
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
873
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
874
+ )
875
+
876
+ for i in range(len(slice_size)):
877
+ size = slice_size[i]
878
+ dim = sliceable_head_dims[i]
879
+ if size is not None and size > dim:
880
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
881
+
882
+ # Recursively walk through all the children.
883
+ # Any children which exposes the set_attention_slice method
884
+ # gets the message
885
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
886
+ if hasattr(module, "set_attention_slice"):
887
+ module.set_attention_slice(slice_size.pop())
888
+
889
+ for child in module.children():
890
+ fn_recursive_set_attention_slice(child, slice_size)
891
+
892
+ reversed_slice_size = list(reversed(slice_size))
893
+ for module in self.children():
894
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
895
+
896
+ def _set_gradient_checkpointing(self, module, value=False):
897
+ if hasattr(module, "gradient_checkpointing"):
898
+ module.gradient_checkpointing = value
899
+
900
+ def enable_freeu(self, s1, s2, b1, b2):
901
+ r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
902
+
903
+ The suffixes after the scaling factors represent the stage blocks where they are being applied.
904
+
905
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
906
+ are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
907
+
908
+ Args:
909
+ s1 (`float`):
910
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
911
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
912
+ s2 (`float`):
913
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
914
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
915
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
916
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
917
+ """
918
+ for i, upsample_block in enumerate(self.up_blocks):
919
+ setattr(upsample_block, "s1", s1)
920
+ setattr(upsample_block, "s2", s2)
921
+ setattr(upsample_block, "b1", b1)
922
+ setattr(upsample_block, "b2", b2)
923
+
924
+ def disable_freeu(self):
925
+ """Disables the FreeU mechanism."""
926
+ freeu_keys = {"s1", "s2", "b1", "b2"}
927
+ for i, upsample_block in enumerate(self.up_blocks):
928
+ for k in freeu_keys:
929
+ if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
930
+ setattr(upsample_block, k, None)
931
+
932
+ def fuse_qkv_projections(self):
933
+ """
934
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
935
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
936
+
937
+ <Tip warning={true}>
938
+
939
+ This API is 🧪 experimental.
940
+
941
+ </Tip>
942
+ """
943
+ self.original_attn_processors = None
944
+
945
+ for _, attn_processor in self.attn_processors.items():
946
+ if "Added" in str(attn_processor.__class__.__name__):
947
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
948
+
949
+ self.original_attn_processors = self.attn_processors
950
+
951
+ for module in self.modules():
952
+ if isinstance(module, Attention):
953
+ module.fuse_projections(fuse=True)
954
+
955
+ def unfuse_qkv_projections(self):
956
+ """Disables the fused QKV projection if enabled.
957
+
958
+ <Tip warning={true}>
959
+
960
+ This API is 🧪 experimental.
961
+
962
+ </Tip>
963
+
964
+ """
965
+ if self.original_attn_processors is not None:
966
+ self.set_attn_processor(self.original_attn_processors)
967
+
968
+ def forward(
969
+ self,
970
+ sample: torch.FloatTensor,
971
+ timestep: Union[torch.Tensor, float, int],
972
+ encoder_hidden_states: torch.Tensor,
973
+ class_labels: Optional[torch.Tensor] = None,
974
+ timestep_cond: Optional[torch.Tensor] = None,
975
+ attention_mask: Optional[torch.Tensor] = None,
976
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
977
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
978
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
979
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
980
+ down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
981
+ encoder_attention_mask: Optional[torch.Tensor] = None,
982
+ return_dict: bool = True,
983
+ ) -> Union[UNet2DConditionOutput, Tuple]:
984
+ r"""
985
+ The [`UNet2DConditionModel`] forward method.
986
+
987
+ Args:
988
+ sample (`torch.FloatTensor`):
989
+ The noisy input tensor with the following shape `(batch, channel, height, width)`.
990
+ timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
991
+ encoder_hidden_states (`torch.FloatTensor`):
992
+ The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
993
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
994
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
995
+ timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
996
+ Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
997
+ through the `self.time_embedding` layer to obtain the timestep embeddings.
998
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
999
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
1000
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
1001
+ negative values to the attention scores corresponding to "discard" tokens.
1002
+ cross_attention_kwargs (`dict`, *optional*):
1003
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1004
+ `self.processor` in
1005
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1006
+ added_cond_kwargs: (`dict`, *optional*):
1007
+ A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
1008
+ are passed along to the UNet blocks.
1009
+ down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
1010
+ A tuple of tensors that if specified are added to the residuals of down unet blocks.
1011
+ mid_block_additional_residual: (`torch.Tensor`, *optional*):
1012
+ A tensor that if specified is added to the residual of the middle unet block.
1013
+ encoder_attention_mask (`torch.Tensor`):
1014
+ A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
1015
+ `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
1016
+ which adds large negative values to the attention scores corresponding to "discard" tokens.
1017
+ return_dict (`bool`, *optional*, defaults to `True`):
1018
+ Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
1019
+ tuple.
1020
+ cross_attention_kwargs (`dict`, *optional*):
1021
+ A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
1022
+ added_cond_kwargs: (`dict`, *optional*):
1023
+ A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
1024
+ are passed along to the UNet blocks.
1025
+ down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
1026
+ additional residuals to be added to UNet long skip connections from down blocks to up blocks for
1027
+ example from ControlNet side model(s)
1028
+ mid_block_additional_residual (`torch.Tensor`, *optional*):
1029
+ additional residual to be added to UNet mid block output, for example from ControlNet side model
1030
+ down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
1031
+ additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
1032
+
1033
+ Returns:
1034
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
1035
+ If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
1036
+ a `tuple` is returned where the first element is the sample tensor.
1037
+ """
1038
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
1039
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
1040
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
1041
+ # on the fly if necessary.
1042
+ default_overall_up_factor = 2**self.num_upsamplers
1043
+
1044
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
1045
+ forward_upsample_size = False
1046
+ upsample_size = None
1047
+
1048
+ for dim in sample.shape[-2:]:
1049
+ if dim % default_overall_up_factor != 0:
1050
+ # Forward upsample size to force interpolation output size.
1051
+ forward_upsample_size = True
1052
+ break
1053
+
1054
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
1055
+ # expects mask of shape:
1056
+ # [batch, key_tokens]
1057
+ # adds singleton query_tokens dimension:
1058
+ # [batch, 1, key_tokens]
1059
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
1060
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
1061
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
1062
+ if attention_mask is not None:
1063
+ # assume that mask is expressed as:
1064
+ # (1 = keep, 0 = discard)
1065
+ # convert mask into a bias that can be added to attention scores:
1066
+ # (keep = +0, discard = -10000.0)
1067
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
1068
+ attention_mask = attention_mask.unsqueeze(1)
1069
+
1070
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
1071
+ if encoder_attention_mask is not None:
1072
+ encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
1073
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
1074
+
1075
+ # 0. center input if necessary
1076
+ if self.config.center_input_sample:
1077
+ sample = 2 * sample - 1.0
1078
+
1079
+ # 1. time
1080
+ timesteps = timestep
1081
+ if not torch.is_tensor(timesteps):
1082
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
1083
+ # This would be a good case for the `match` statement (Python 3.10+)
1084
+ is_mps = sample.device.type == "mps"
1085
+ if isinstance(timestep, float):
1086
+ dtype = torch.float32 if is_mps else torch.float64
1087
+ else:
1088
+ dtype = torch.int32 if is_mps else torch.int64
1089
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
1090
+ elif len(timesteps.shape) == 0:
1091
+ timesteps = timesteps[None].to(sample.device)
1092
+
1093
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1094
+ timesteps = timesteps.expand(sample.shape[0])
1095
+
1096
+ t_emb = self.time_proj(timesteps)
1097
+
1098
+ # `Timesteps` does not contain any weights and will always return f32 tensors
1099
+ # but time_embedding might actually be running in fp16. so we need to cast here.
1100
+ # there might be better ways to encapsulate this.
1101
+ t_emb = t_emb.to(dtype=sample.dtype)
1102
+
1103
+ emb = self.time_embedding(t_emb, timestep_cond)
1104
+ aug_emb = None
1105
+
1106
+ if self.class_embedding is not None:
1107
+ if class_labels is None:
1108
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
1109
+
1110
+ if self.config.class_embed_type == "timestep":
1111
+ class_labels = self.time_proj(class_labels)
1112
+
1113
+ # `Timesteps` does not contain any weights and will always return f32 tensors
1114
+ # there might be better ways to encapsulate this.
1115
+ class_labels = class_labels.to(dtype=sample.dtype)
1116
+
1117
+ class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
1118
+
1119
+ if self.config.class_embeddings_concat:
1120
+ emb = torch.cat([emb, class_emb], dim=-1)
1121
+ else:
1122
+ emb = emb + class_emb
1123
+
1124
+ if self.config.addition_embed_type == "text":
1125
+ aug_emb = self.add_embedding(encoder_hidden_states)
1126
+ elif self.config.addition_embed_type == "text_image":
1127
+ # Kandinsky 2.1 - style
1128
+ if "image_embeds" not in added_cond_kwargs:
1129
+ raise ValueError(
1130
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1131
+ )
1132
+
1133
+ image_embs = added_cond_kwargs.get("image_embeds")
1134
+ text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
1135
+ aug_emb = self.add_embedding(text_embs, image_embs)
1136
+ elif self.config.addition_embed_type == "text_time":
1137
+ # SDXL - style
1138
+ if "text_embeds" not in added_cond_kwargs:
1139
+ raise ValueError(
1140
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
1141
+ )
1142
+ text_embeds = added_cond_kwargs.get("text_embeds")
1143
+ if "time_ids" not in added_cond_kwargs:
1144
+ raise ValueError(
1145
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
1146
+ )
1147
+ time_ids = added_cond_kwargs.get("time_ids")
1148
+ time_embeds = self.add_time_proj(time_ids.flatten())
1149
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
1150
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
1151
+ add_embeds = add_embeds.to(emb.dtype)
1152
+ aug_emb = self.add_embedding(add_embeds)
1153
+ elif self.config.addition_embed_type == "image":
1154
+ # Kandinsky 2.2 - style
1155
+ if "image_embeds" not in added_cond_kwargs:
1156
+ raise ValueError(
1157
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
1158
+ )
1159
+ image_embs = added_cond_kwargs.get("image_embeds")
1160
+ aug_emb = self.add_embedding(image_embs)
1161
+ elif self.config.addition_embed_type == "image_hint":
1162
+ # Kandinsky 2.2 - style
1163
+ if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
1164
+ raise ValueError(
1165
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
1166
+ )
1167
+ image_embs = added_cond_kwargs.get("image_embeds")
1168
+ hint = added_cond_kwargs.get("hint")
1169
+ aug_emb, hint = self.add_embedding(image_embs, hint)
1170
+ sample = torch.cat([sample, hint], dim=1)
1171
+
1172
+ emb = emb + aug_emb if aug_emb is not None else emb
1173
+
1174
+ if self.time_embed_act is not None:
1175
+ emb = self.time_embed_act(emb)
1176
+
1177
+ if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
1178
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
1179
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
1180
+ # Kadinsky 2.1 - style
1181
+ if "image_embeds" not in added_cond_kwargs:
1182
+ raise ValueError(
1183
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1184
+ )
1185
+
1186
+ image_embeds = added_cond_kwargs.get("image_embeds")
1187
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
1188
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
1189
+ # Kandinsky 2.2 - style
1190
+ if "image_embeds" not in added_cond_kwargs:
1191
+ raise ValueError(
1192
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1193
+ )
1194
+ image_embeds = added_cond_kwargs.get("image_embeds")
1195
+ encoder_hidden_states = self.encoder_hid_proj(image_embeds)
1196
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
1197
+ if "image_embeds" not in added_cond_kwargs:
1198
+ raise ValueError(
1199
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1200
+ )
1201
+ image_embeds = added_cond_kwargs.get("image_embeds")
1202
+ image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype)
1203
+ encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)
1204
+
1205
+ # 2. pre-process
1206
+ sample = self.conv_in(sample)
1207
+
1208
+ # 2.5 GLIGEN position net
1209
+ if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
1210
+ cross_attention_kwargs = cross_attention_kwargs.copy()
1211
+ gligen_args = cross_attention_kwargs.pop("gligen")
1212
+ cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
1213
+
1214
+ # 3. down
1215
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
1216
+ if USE_PEFT_BACKEND:
1217
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
1218
+ scale_lora_layers(self, lora_scale)
1219
+
1220
+ is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
1221
+ # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
1222
+ is_adapter = down_intrablock_additional_residuals is not None
1223
+ # maintain backward compatibility for legacy usage, where
1224
+ # T2I-Adapter and ControlNet both use down_block_additional_residuals arg
1225
+ # but can only use one or the other
1226
+ if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
1227
+ deprecate(
1228
+ "T2I should not use down_block_additional_residuals",
1229
+ "1.3.0",
1230
+ "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
1231
+ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
1232
+ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
1233
+ standard_warn=False,
1234
+ )
1235
+ down_intrablock_additional_residuals = down_block_additional_residuals
1236
+ is_adapter = True
1237
+
1238
+ down_block_res_samples = (sample,)
1239
+ for downsample_block in self.down_blocks:
1240
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
1241
+ # For t2i-adapter CrossAttnDownBlock2D
1242
+ additional_residuals = {}
1243
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1244
+ additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
1245
+
1246
+ sample, res_samples = downsample_block(
1247
+ hidden_states=sample,
1248
+ temb=emb,
1249
+ encoder_hidden_states=encoder_hidden_states,
1250
+ attention_mask=attention_mask,
1251
+ cross_attention_kwargs=cross_attention_kwargs,
1252
+ encoder_attention_mask=encoder_attention_mask,
1253
+ **additional_residuals,
1254
+ )
1255
+ else:
1256
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
1257
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1258
+ sample += down_intrablock_additional_residuals.pop(0)
1259
+
1260
+ down_block_res_samples += res_samples
1261
+
1262
+ if is_controlnet:
1263
+ new_down_block_res_samples = ()
1264
+
1265
+ for down_block_res_sample, down_block_additional_residual in zip(
1266
+ down_block_res_samples, down_block_additional_residuals
1267
+ ):
1268
+ down_block_res_sample = down_block_res_sample + down_block_additional_residual
1269
+ new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1270
+
1271
+ down_block_res_samples = new_down_block_res_samples
1272
+
1273
+ # 4. mid
1274
+ if self.mid_block is not None:
1275
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
1276
+ sample = self.mid_block(
1277
+ sample,
1278
+ emb,
1279
+ encoder_hidden_states=encoder_hidden_states,
1280
+ attention_mask=attention_mask,
1281
+ cross_attention_kwargs=cross_attention_kwargs,
1282
+ encoder_attention_mask=encoder_attention_mask,
1283
+ )
1284
+ else:
1285
+ sample = self.mid_block(sample, emb)
1286
+
1287
+ # To support T2I-Adapter-XL
1288
+ if (
1289
+ is_adapter
1290
+ and len(down_intrablock_additional_residuals) > 0
1291
+ and sample.shape == down_intrablock_additional_residuals[0].shape
1292
+ ):
1293
+ sample += down_intrablock_additional_residuals.pop(0)
1294
+
1295
+ if is_controlnet:
1296
+ sample = sample + mid_block_additional_residual
1297
+
1298
+ # 5. up
1299
+ for i, upsample_block in enumerate(self.up_blocks):
1300
+ is_final_block = i == len(self.up_blocks) - 1
1301
+
1302
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
1303
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
1304
+
1305
+ # if we have not reached the final block and need to forward the
1306
+ # upsample size, we do it here
1307
+ if not is_final_block and forward_upsample_size:
1308
+ upsample_size = down_block_res_samples[-1].shape[2:]
1309
+
1310
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
1311
+ sample = upsample_block(
1312
+ hidden_states=sample,
1313
+ temb=emb,
1314
+ res_hidden_states_tuple=res_samples,
1315
+ encoder_hidden_states=encoder_hidden_states,
1316
+ cross_attention_kwargs=cross_attention_kwargs,
1317
+ upsample_size=upsample_size,
1318
+ attention_mask=attention_mask,
1319
+ encoder_attention_mask=encoder_attention_mask,
1320
+ )
1321
+ else:
1322
+ sample = upsample_block(
1323
+ hidden_states=sample,
1324
+ temb=emb,
1325
+ res_hidden_states_tuple=res_samples,
1326
+ upsample_size=upsample_size,
1327
+ scale=lora_scale,
1328
+ )
1329
+
1330
+ # 6. post-process
1331
+ if self.conv_norm_out:
1332
+ sample = self.conv_norm_out(sample)
1333
+ sample = self.conv_act(sample)
1334
+ sample = self.conv_out(sample)
1335
+
1336
+ if USE_PEFT_BACKEND:
1337
+ # remove `lora_scale` from each PEFT layer
1338
+ unscale_lora_layers(self, lora_scale)
1339
+
1340
+ if not return_dict:
1341
+ return (sample,)
1342
+
1343
+ return UNet2DConditionOutput(sample=sample)
vae/autoencoder_kl.py ADDED
@@ -0,0 +1,559 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Dict, Optional, Tuple, Union
15
+
16
+ import torch
17
+ import torch.nn as nn
18
+ from peft import LoraConfig
19
+
20
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
21
+ from diffusers.loaders import FromOriginalVAEMixin
22
+ from diffusers.utils.accelerate_utils import apply_forward_hook
23
+ from diffusers.models.attention_processor import (
24
+ ADDED_KV_ATTENTION_PROCESSORS,
25
+ CROSS_ATTENTION_PROCESSORS,
26
+ Attention,
27
+ AttentionProcessor,
28
+ AttnAddedKVProcessor,
29
+ AttnProcessor,
30
+ )
31
+ from diffusers.models.modeling_outputs import AutoencoderKLOutput
32
+ from diffusers.models.modeling_utils import ModelMixin
33
+ from diffusers.models.autoencoders.vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
34
+
35
+
36
+ def my_vae_encoder_fwd(self, sample):
37
+ sample = self.conv_in(sample)
38
+ l_blocks = []
39
+ # down
40
+ for down_block in self.down_blocks:
41
+ l_blocks.append(sample)
42
+ sample = down_block(sample)
43
+ # middle
44
+ sample = self.mid_block(sample)
45
+ sample = self.conv_norm_out(sample)
46
+ sample = self.conv_act(sample)
47
+ sample = self.conv_out(sample)
48
+ self.current_down_blocks = l_blocks
49
+ return sample
50
+
51
+
52
+ def my_vae_decoder_fwd(self, sample, latent_embeds=None):
53
+ sample = self.conv_in(sample)
54
+ upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
55
+ # middle
56
+ sample = self.mid_block(sample, latent_embeds)
57
+ sample = sample.to(upscale_dtype)
58
+ if not self.ignore_skip:
59
+ skip_convs = [self.skip_conv_1, self.skip_conv_2, self.skip_conv_3, self.skip_conv_4]
60
+ # up
61
+ for idx, up_block in enumerate(self.up_blocks):
62
+ skip_in = skip_convs[idx](self.incoming_skip_acts[::-1][idx] * self.gamma)
63
+ # add skip
64
+ sample = sample + skip_in
65
+ sample = up_block(sample, latent_embeds)
66
+ else:
67
+ for idx, up_block in enumerate(self.up_blocks):
68
+ sample = up_block(sample, latent_embeds)
69
+ # post-process
70
+ if latent_embeds is None:
71
+ sample = self.conv_norm_out(sample)
72
+ else:
73
+ sample = self.conv_norm_out(sample, latent_embeds)
74
+ sample = self.conv_act(sample)
75
+ sample = self.conv_out(sample)
76
+ return sample
77
+
78
+
79
+ class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
80
+ r"""
81
+ A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
82
+
83
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
84
+ for all models (such as downloading or saving).
85
+
86
+ Parameters:
87
+ in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
88
+ out_channels (int, *optional*, defaults to 3): Number of channels in the output.
89
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
90
+ Tuple of downsample block types.
91
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
92
+ Tuple of upsample block types.
93
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
94
+ Tuple of block output channels.
95
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
96
+ latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
97
+ sample_size (`int`, *optional*, defaults to `32`): Sample input size.
98
+ scaling_factor (`float`, *optional*, defaults to 0.18215):
99
+ The component-wise standard deviation of the trained latent space computed using the first batch of the
100
+ training set. This is used to scale the latent space to have unit variance when training the diffusion
101
+ model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
102
+ diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
103
+ / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
104
+ Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
105
+ force_upcast (`bool`, *optional*, default to `True`):
106
+ If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
107
+ can be fine-tuned / trained to a lower range without loosing too much precision in which case
108
+ `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
109
+ """
110
+
111
+ _supports_gradient_checkpointing = True
112
+
113
+ @register_to_config
114
+ def __init__(
115
+ self,
116
+ in_channels: int = 3,
117
+ out_channels: int = 3,
118
+ down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
119
+ up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
120
+ block_out_channels: Tuple[int] = (64,),
121
+ layers_per_block: int = 1,
122
+ act_fn: str = "silu",
123
+ latent_channels: int = 4,
124
+ norm_num_groups: int = 32,
125
+ sample_size: int = 32,
126
+ scaling_factor: float = 0.18215,
127
+ force_upcast: float = True,
128
+ lora_rank: int = 4,
129
+ gamma: float = 1.0,
130
+ ignore_skip: bool = False,
131
+ ):
132
+ super().__init__()
133
+
134
+ # pass init params to Encoder
135
+ self.encoder = Encoder(
136
+ in_channels=in_channels,
137
+ out_channels=latent_channels,
138
+ down_block_types=down_block_types,
139
+ block_out_channels=block_out_channels,
140
+ layers_per_block=layers_per_block,
141
+ act_fn=act_fn,
142
+ norm_num_groups=norm_num_groups,
143
+ double_z=True,
144
+ )
145
+
146
+ # pass init params to Decoder
147
+ self.decoder = Decoder(
148
+ in_channels=latent_channels,
149
+ out_channels=out_channels,
150
+ up_block_types=up_block_types,
151
+ block_out_channels=block_out_channels,
152
+ layers_per_block=layers_per_block,
153
+ norm_num_groups=norm_num_groups,
154
+ act_fn=act_fn,
155
+ )
156
+
157
+ self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
158
+ self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
159
+
160
+ self.use_slicing = False
161
+ self.use_tiling = False
162
+
163
+ # only relevant if vae tiling is enabled
164
+ self.tile_sample_min_size = self.config.sample_size
165
+ sample_size = (
166
+ self.config.sample_size[0]
167
+ if isinstance(self.config.sample_size, (list, tuple))
168
+ else self.config.sample_size
169
+ )
170
+ self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
171
+ self.tile_overlap_factor = 0.25
172
+
173
+ self.encoder.forward = my_vae_encoder_fwd.__get__(self.encoder, self.encoder.__class__)
174
+ self.decoder.forward = my_vae_decoder_fwd.__get__(self.decoder, self.decoder.__class__)
175
+ # add the skip connection convs
176
+ self.decoder.skip_conv_1 = torch.nn.Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
177
+ self.decoder.skip_conv_2 = torch.nn.Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
178
+ self.decoder.skip_conv_3 = torch.nn.Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
179
+ self.decoder.skip_conv_4 = torch.nn.Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
180
+ self.decoder.ignore_skip = ignore_skip
181
+ self.decoder.gamma = gamma
182
+
183
+ target_modules_vae = ["conv1", "conv2", "conv_in", "conv_shortcut", "conv", "conv_out",
184
+ "skip_conv_1", "skip_conv_2", "skip_conv_3", "skip_conv_4",
185
+ "to_k", "to_q", "to_v", "to_out.0",
186
+ ]
187
+ target_modules = []
188
+ for id, (name, param) in enumerate(self.named_modules()):
189
+ if 'decoder' in name and any(name.endswith(x) for x in target_modules_vae):
190
+ target_modules.append(name)
191
+ target_modules_vae = target_modules
192
+
193
+ vae_lora_config = LoraConfig(r=lora_rank, init_lora_weights="gaussian", target_modules=target_modules_vae)
194
+ self.add_adapter(vae_lora_config, adapter_name="vae_skip")
195
+
196
+ def _set_gradient_checkpointing(self, module, value=False):
197
+ if isinstance(module, (Encoder, Decoder)):
198
+ module.gradient_checkpointing = value
199
+
200
+ def enable_tiling(self, use_tiling: bool = True):
201
+ r"""
202
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
203
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
204
+ processing larger images.
205
+ """
206
+ self.use_tiling = use_tiling
207
+
208
+ def disable_tiling(self):
209
+ r"""
210
+ Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
211
+ decoding in one step.
212
+ """
213
+ self.enable_tiling(False)
214
+
215
+ def enable_slicing(self):
216
+ r"""
217
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
218
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
219
+ """
220
+ self.use_slicing = True
221
+
222
+ def disable_slicing(self):
223
+ r"""
224
+ Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
225
+ decoding in one step.
226
+ """
227
+ self.use_slicing = False
228
+
229
+ @property
230
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
231
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
232
+ r"""
233
+ Returns:
234
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
235
+ indexed by its weight name.
236
+ """
237
+ # set recursively
238
+ processors = {}
239
+
240
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
241
+ if hasattr(module, "get_processor"):
242
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
243
+
244
+ for sub_name, child in module.named_children():
245
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
246
+
247
+ return processors
248
+
249
+ for name, module in self.named_children():
250
+ fn_recursive_add_processors(name, module, processors)
251
+
252
+ return processors
253
+
254
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
255
+ def set_attn_processor(
256
+ self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
257
+ ):
258
+ r"""
259
+ Sets the attention processor to use to compute attention.
260
+
261
+ Parameters:
262
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
263
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
264
+ for **all** `Attention` layers.
265
+
266
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
267
+ processor. This is strongly recommended when setting trainable attention processors.
268
+
269
+ """
270
+ count = len(self.attn_processors.keys())
271
+
272
+ if isinstance(processor, dict) and len(processor) != count:
273
+ raise ValueError(
274
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
275
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
276
+ )
277
+
278
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
279
+ if hasattr(module, "set_processor"):
280
+ if not isinstance(processor, dict):
281
+ module.set_processor(processor, _remove_lora=_remove_lora)
282
+ else:
283
+ module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
284
+
285
+ for sub_name, child in module.named_children():
286
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
287
+
288
+ for name, module in self.named_children():
289
+ fn_recursive_attn_processor(name, module, processor)
290
+
291
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
292
+ def set_default_attn_processor(self):
293
+ """
294
+ Disables custom attention processors and sets the default attention implementation.
295
+ """
296
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
297
+ processor = AttnAddedKVProcessor()
298
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
299
+ processor = AttnProcessor()
300
+ else:
301
+ raise ValueError(
302
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
303
+ )
304
+
305
+ self.set_attn_processor(processor, _remove_lora=True)
306
+
307
+ @apply_forward_hook
308
+ def encode(
309
+ self, x: torch.FloatTensor, return_dict: bool = True
310
+ ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
311
+ """
312
+ Encode a batch of images into latents.
313
+
314
+ Args:
315
+ x (`torch.FloatTensor`): Input batch of images.
316
+ return_dict (`bool`, *optional*, defaults to `True`):
317
+ Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
318
+
319
+ Returns:
320
+ The latent representations of the encoded images. If `return_dict` is True, a
321
+ [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
322
+ """
323
+ if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
324
+ return self.tiled_encode(x, return_dict=return_dict)
325
+
326
+ if self.use_slicing and x.shape[0] > 1:
327
+ encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
328
+ h = torch.cat(encoded_slices)
329
+ else:
330
+ h = self.encoder(x)
331
+
332
+ moments = self.quant_conv(h)
333
+ posterior = DiagonalGaussianDistribution(moments)
334
+
335
+ if not return_dict:
336
+ return (posterior,)
337
+
338
+ return AutoencoderKLOutput(latent_dist=posterior)
339
+
340
+ def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
341
+ if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
342
+ return self.tiled_decode(z, return_dict=return_dict)
343
+
344
+ z = self.post_quant_conv(z)
345
+ dec = self.decoder(z)
346
+
347
+ if not return_dict:
348
+ return (dec,)
349
+
350
+ return DecoderOutput(sample=dec)
351
+
352
+ @apply_forward_hook
353
+ def decode(
354
+ self, z: torch.FloatTensor, return_dict: bool = True, generator=None
355
+ ) -> Union[DecoderOutput, torch.FloatTensor]:
356
+ """
357
+ Decode a batch of images.
358
+
359
+ Args:
360
+ z (`torch.FloatTensor`): Input batch of latent vectors.
361
+ return_dict (`bool`, *optional*, defaults to `True`):
362
+ Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
363
+
364
+ Returns:
365
+ [`~models.vae.DecoderOutput`] or `tuple`:
366
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
367
+ returned.
368
+
369
+ """
370
+ if self.use_slicing and z.shape[0] > 1:
371
+ decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
372
+ decoded = torch.cat(decoded_slices)
373
+ else:
374
+ decoded = self._decode(z).sample
375
+
376
+ if not return_dict:
377
+ return (decoded,)
378
+
379
+ return DecoderOutput(sample=decoded)
380
+
381
+ def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
382
+ blend_extent = min(a.shape[2], b.shape[2], blend_extent)
383
+ for y in range(blend_extent):
384
+ b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
385
+ return b
386
+
387
+ def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
388
+ blend_extent = min(a.shape[3], b.shape[3], blend_extent)
389
+ for x in range(blend_extent):
390
+ b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
391
+ return b
392
+
393
+ def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
394
+ r"""Encode a batch of images using a tiled encoder.
395
+
396
+ When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
397
+ steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
398
+ different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
399
+ tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
400
+ output, but they should be much less noticeable.
401
+
402
+ Args:
403
+ x (`torch.FloatTensor`): Input batch of images.
404
+ return_dict (`bool`, *optional*, defaults to `True`):
405
+ Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
406
+
407
+ Returns:
408
+ [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
409
+ If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
410
+ `tuple` is returned.
411
+ """
412
+ overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
413
+ blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
414
+ row_limit = self.tile_latent_min_size - blend_extent
415
+
416
+ # Split the image into 512x512 tiles and encode them separately.
417
+ rows = []
418
+ for i in range(0, x.shape[2], overlap_size):
419
+ row = []
420
+ for j in range(0, x.shape[3], overlap_size):
421
+ tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
422
+ tile = self.encoder(tile)
423
+ tile = self.quant_conv(tile)
424
+ row.append(tile)
425
+ rows.append(row)
426
+ result_rows = []
427
+ for i, row in enumerate(rows):
428
+ result_row = []
429
+ for j, tile in enumerate(row):
430
+ # blend the above tile and the left tile
431
+ # to the current tile and add the current tile to the result row
432
+ if i > 0:
433
+ tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
434
+ if j > 0:
435
+ tile = self.blend_h(row[j - 1], tile, blend_extent)
436
+ result_row.append(tile[:, :, :row_limit, :row_limit])
437
+ result_rows.append(torch.cat(result_row, dim=3))
438
+
439
+ moments = torch.cat(result_rows, dim=2)
440
+ posterior = DiagonalGaussianDistribution(moments)
441
+
442
+ if not return_dict:
443
+ return (posterior,)
444
+
445
+ return AutoencoderKLOutput(latent_dist=posterior)
446
+
447
+ def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
448
+ r"""
449
+ Decode a batch of images using a tiled decoder.
450
+
451
+ Args:
452
+ z (`torch.FloatTensor`): Input batch of latent vectors.
453
+ return_dict (`bool`, *optional*, defaults to `True`):
454
+ Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
455
+
456
+ Returns:
457
+ [`~models.vae.DecoderOutput`] or `tuple`:
458
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
459
+ returned.
460
+ """
461
+ overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
462
+ blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
463
+ row_limit = self.tile_sample_min_size - blend_extent
464
+
465
+ # Split z into overlapping 64x64 tiles and decode them separately.
466
+ # The tiles have an overlap to avoid seams between tiles.
467
+ rows = []
468
+ for i in range(0, z.shape[2], overlap_size):
469
+ row = []
470
+ for j in range(0, z.shape[3], overlap_size):
471
+ tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
472
+ tile = self.post_quant_conv(tile)
473
+ decoded = self.decoder(tile)
474
+ row.append(decoded)
475
+ rows.append(row)
476
+ result_rows = []
477
+ for i, row in enumerate(rows):
478
+ result_row = []
479
+ for j, tile in enumerate(row):
480
+ # blend the above tile and the left tile
481
+ # to the current tile and add the current tile to the result row
482
+ if i > 0:
483
+ tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
484
+ if j > 0:
485
+ tile = self.blend_h(row[j - 1], tile, blend_extent)
486
+ result_row.append(tile[:, :, :row_limit, :row_limit])
487
+ result_rows.append(torch.cat(result_row, dim=3))
488
+
489
+ dec = torch.cat(result_rows, dim=2)
490
+ if not return_dict:
491
+ return (dec,)
492
+
493
+ return DecoderOutput(sample=dec)
494
+
495
+ def forward(
496
+ self,
497
+ sample: torch.FloatTensor,
498
+ sample_posterior: bool = False,
499
+ return_dict: bool = True,
500
+ generator: Optional[torch.Generator] = None,
501
+ ) -> Union[DecoderOutput, torch.FloatTensor]:
502
+ r"""
503
+ Args:
504
+ sample (`torch.FloatTensor`): Input sample.
505
+ sample_posterior (`bool`, *optional*, defaults to `False`):
506
+ Whether to sample from the posterior.
507
+ return_dict (`bool`, *optional*, defaults to `True`):
508
+ Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
509
+ """
510
+ x = sample
511
+ posterior = self.encode(x).latent_dist
512
+ if sample_posterior:
513
+ z = posterior.sample(generator=generator)
514
+ else:
515
+ z = posterior.mode()
516
+ dec = self.decode(z).sample
517
+
518
+ if not return_dict:
519
+ return (dec,)
520
+
521
+ return DecoderOutput(sample=dec)
522
+
523
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
524
+ def fuse_qkv_projections(self):
525
+ """
526
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
527
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
528
+
529
+ <Tip warning={true}>
530
+
531
+ This API is 🧪 experimental.
532
+
533
+ </Tip>
534
+ """
535
+ self.original_attn_processors = None
536
+
537
+ for _, attn_processor in self.attn_processors.items():
538
+ if "Added" in str(attn_processor.__class__.__name__):
539
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
540
+
541
+ self.original_attn_processors = self.attn_processors
542
+
543
+ for module in self.modules():
544
+ if isinstance(module, Attention):
545
+ module.fuse_projections(fuse=True)
546
+
547
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
548
+ def unfuse_qkv_projections(self):
549
+ """Disables the fused QKV projection if enabled.
550
+
551
+ <Tip warning={true}>
552
+
553
+ This API is 🧪 experimental.
554
+
555
+ </Tip>
556
+
557
+ """
558
+ if self.original_attn_processors is not None:
559
+ self.set_attn_processor(self.original_attn_processors)
vae/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "AutoencoderKL",
3
+ "_diffusers_version": "0.25.1",
4
+ "_name_or_path": "nvidia/difix_ref/vae",
5
+ "act_fn": "silu",
6
+ "block_out_channels": [
7
+ 128,
8
+ 256,
9
+ 512,
10
+ 512
11
+ ],
12
+ "down_block_types": [
13
+ "DownEncoderBlock2D",
14
+ "DownEncoderBlock2D",
15
+ "DownEncoderBlock2D",
16
+ "DownEncoderBlock2D"
17
+ ],
18
+ "force_upcast": true,
19
+ "gamma": 1.0,
20
+ "ignore_skip": false,
21
+ "in_channels": 3,
22
+ "latent_channels": 4,
23
+ "layers_per_block": 2,
24
+ "lora_rank": 4,
25
+ "norm_num_groups": 32,
26
+ "out_channels": 3,
27
+ "sample_size": 768,
28
+ "scaling_factor": 0.18215,
29
+ "up_block_types": [
30
+ "UpDecoderBlock2D",
31
+ "UpDecoderBlock2D",
32
+ "UpDecoderBlock2D",
33
+ "UpDecoderBlock2D"
34
+ ]
35
+ }
vae/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3aa93824c839302d1103d72b0ea933df65206945b0e93140328562fffa6cf65
3
+ size 338717612