nithinraok
commited on
Commit
·
37664aa
1
Parent(s):
8d3063e
update diarization numbers to show on papers with code
Browse files
README.md
CHANGED
@@ -47,7 +47,7 @@ model-index:
|
|
47 |
type: Speaker Diarization
|
48 |
name: speaker-diarization
|
49 |
dataset:
|
50 |
-
name:
|
51 |
type: ami_diarization
|
52 |
config: oracle-vad-known-number-of-speakers
|
53 |
split: test
|
@@ -56,26 +56,12 @@ model-index:
|
|
56 |
metrics:
|
57 |
- name: Test DER
|
58 |
type: der
|
59 |
-
value: 1.73
|
60 |
- task:
|
61 |
type: Speaker Diarization
|
62 |
name: speaker-diarization
|
63 |
dataset:
|
64 |
-
name:
|
65 |
-
type: ami_diarization
|
66 |
-
config: oracle-vad-unknown-number-of-speakers
|
67 |
-
split: test
|
68 |
-
args:
|
69 |
-
language: en
|
70 |
-
metrics:
|
71 |
-
- name: Test DER
|
72 |
-
type: der
|
73 |
-
value: 1.89
|
74 |
-
- task:
|
75 |
-
type: Speaker Diarization
|
76 |
-
name: speaker-diarization
|
77 |
-
dataset:
|
78 |
-
name: AMI (Lapel)
|
79 |
type: ami_diarization
|
80 |
config: oracle-vad-known-number-of-speakers
|
81 |
split: test
|
@@ -89,21 +75,7 @@ model-index:
|
|
89 |
type: Speaker Diarization
|
90 |
name: speaker-diarization
|
91 |
dataset:
|
92 |
-
name:
|
93 |
-
type: ami_diarization
|
94 |
-
config: oracle-vad-unknown-number-of-speakers
|
95 |
-
split: test
|
96 |
-
args:
|
97 |
-
language: en
|
98 |
-
metrics:
|
99 |
-
- name: Test DER
|
100 |
-
type: der
|
101 |
-
value: 2.03
|
102 |
-
- task:
|
103 |
-
type: Speaker Diarization
|
104 |
-
name: speaker-diarization
|
105 |
-
dataset:
|
106 |
-
name: CH109
|
107 |
type: callhome_diarization
|
108 |
config: oracle-vad-known-number-of-speakers
|
109 |
split: test
|
@@ -117,21 +89,7 @@ model-index:
|
|
117 |
type: Speaker Diarization
|
118 |
name: speaker-diarization
|
119 |
dataset:
|
120 |
-
name:
|
121 |
-
type: callhome_diarization
|
122 |
-
config: oracle-vad-unknown-number-of-speakers
|
123 |
-
split: test
|
124 |
-
args:
|
125 |
-
language: en
|
126 |
-
metrics:
|
127 |
-
- name: Test DER
|
128 |
-
type: der
|
129 |
-
value: 1.63
|
130 |
-
- task:
|
131 |
-
type: Speaker Diarization
|
132 |
-
name: speaker-diarization
|
133 |
-
dataset:
|
134 |
-
name: NIST SRE 2000
|
135 |
type: nist-sre_diarization
|
136 |
config: oracle-vad-known-number-of-speakers
|
137 |
split: test
|
@@ -141,20 +99,6 @@ model-index:
|
|
141 |
- name: Test DER
|
142 |
type: der
|
143 |
value: 6.73
|
144 |
-
- task:
|
145 |
-
type: Speaker Diarization
|
146 |
-
name: speaker-diarization
|
147 |
-
dataset:
|
148 |
-
name: NIST SRE 2000
|
149 |
-
type: nist-sre_diarization
|
150 |
-
config: oracle-vad-unknown-number-of-speakers
|
151 |
-
split: test
|
152 |
-
args:
|
153 |
-
language: en
|
154 |
-
metrics:
|
155 |
-
- name: Test DER
|
156 |
-
type: der
|
157 |
-
value: 5.38
|
158 |
---
|
159 |
|
160 |
# NVIDIA TitaNet-Large (en-US)
|
@@ -176,7 +120,7 @@ See the [model architecture](#model-architecture) section and [NeMo documentatio
|
|
176 |
|
177 |
## NVIDIA NeMo: Training
|
178 |
|
179 |
-
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
|
180 |
```
|
181 |
pip install nemo_toolkit['all']
|
182 |
```
|
|
|
47 |
type: Speaker Diarization
|
48 |
name: speaker-diarization
|
49 |
dataset:
|
50 |
+
name: ami-mixheadset
|
51 |
type: ami_diarization
|
52 |
config: oracle-vad-known-number-of-speakers
|
53 |
split: test
|
|
|
56 |
metrics:
|
57 |
- name: Test DER
|
58 |
type: der
|
59 |
+
value: 1.73
|
60 |
- task:
|
61 |
type: Speaker Diarization
|
62 |
name: speaker-diarization
|
63 |
dataset:
|
64 |
+
name: ami-lapel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
type: ami_diarization
|
66 |
config: oracle-vad-known-number-of-speakers
|
67 |
split: test
|
|
|
75 |
type: Speaker Diarization
|
76 |
name: speaker-diarization
|
77 |
dataset:
|
78 |
+
name: ch109
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
type: callhome_diarization
|
80 |
config: oracle-vad-known-number-of-speakers
|
81 |
split: test
|
|
|
89 |
type: Speaker Diarization
|
90 |
name: speaker-diarization
|
91 |
dataset:
|
92 |
+
name: nist-sre-2000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
type: nist-sre_diarization
|
94 |
config: oracle-vad-known-number-of-speakers
|
95 |
split: test
|
|
|
99 |
- name: Test DER
|
100 |
type: der
|
101 |
value: 6.73
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
---
|
103 |
|
104 |
# NVIDIA TitaNet-Large (en-US)
|
|
|
120 |
|
121 |
## NVIDIA NeMo: Training
|
122 |
|
123 |
+
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed the latest Pytorch version.
|
124 |
```
|
125 |
pip install nemo_toolkit['all']
|
126 |
```
|