nithinraok
commited on
Commit
·
b202bcd
1
Parent(s):
225159b
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,292 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: cc-by-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: nemo
|
5 |
+
datasets:
|
6 |
+
- VOXCELEB-1
|
7 |
+
- VOXCELEB-2
|
8 |
+
- FISHER
|
9 |
+
- switchboard
|
10 |
+
- librispeech_asr
|
11 |
+
- SRE (2004-2010)
|
12 |
+
thumbnail: null
|
13 |
+
tags:
|
14 |
+
- speaker
|
15 |
+
- speech
|
16 |
+
- audio
|
17 |
+
- speaker-verification
|
18 |
+
- speaker-recognition
|
19 |
+
- speaker-diarization
|
20 |
+
- titanet
|
21 |
+
- NeMo
|
22 |
+
- pytorch
|
23 |
license: cc-by-4.0
|
24 |
+
widget:
|
25 |
+
- example_title: Librispeech sample 1
|
26 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
27 |
+
- example_title: Librispeech sample 2
|
28 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
29 |
+
model-index:
|
30 |
+
- name: speakerverification_en_titanet_large
|
31 |
+
results:
|
32 |
+
- task:
|
33 |
+
name: Speaker Verification
|
34 |
+
type: speaker-verification
|
35 |
+
dataset:
|
36 |
+
name: VoxCeleb-1 (Cleaned)
|
37 |
+
type: voxceleb1-O
|
38 |
+
config: clean
|
39 |
+
split: test
|
40 |
+
args:
|
41 |
+
language: en
|
42 |
+
metrics:
|
43 |
+
- name: Test EER
|
44 |
+
type: eer
|
45 |
+
value: 0.66
|
46 |
+
- task:
|
47 |
+
type: Speaker Diarization
|
48 |
+
name: speaker-diarization
|
49 |
+
dataset:
|
50 |
+
name: AMI (MixHeadset)
|
51 |
+
type: ami_diarization
|
52 |
+
config: oracle-vad-known-number-of-speakers
|
53 |
+
split: test
|
54 |
+
args:
|
55 |
+
language: en
|
56 |
+
metrics:
|
57 |
+
- name: Test DER
|
58 |
+
type: der
|
59 |
+
value: 1.73
|
60 |
+
- task:
|
61 |
+
type: Speaker Diarization
|
62 |
+
name: speaker-diarization
|
63 |
+
dataset:
|
64 |
+
name: AMI (MixHeadset)
|
65 |
+
type: ami_diarization
|
66 |
+
config: oracle-vad-unknown-number-of-speakers
|
67 |
+
split: test
|
68 |
+
args:
|
69 |
+
language: en
|
70 |
+
metrics:
|
71 |
+
- name: Test DER
|
72 |
+
type: der
|
73 |
+
value: 1.89
|
74 |
+
- task:
|
75 |
+
type: Speaker Diarization
|
76 |
+
name: speaker-diarization
|
77 |
+
dataset:
|
78 |
+
name: AMI (Lapel)
|
79 |
+
type: ami_diarization
|
80 |
+
config: oracle-vad-known-number-of-speakers
|
81 |
+
split: test
|
82 |
+
args:
|
83 |
+
language: en
|
84 |
+
metrics:
|
85 |
+
- name: Test DER
|
86 |
+
type: der
|
87 |
+
value: 2.03
|
88 |
+
- task:
|
89 |
+
type: Speaker Diarization
|
90 |
+
name: speaker-diarization
|
91 |
+
dataset:
|
92 |
+
name: AMI (Lapel)
|
93 |
+
type: ami_diarization
|
94 |
+
config: oracle-vad-unknown-number-of-speakers
|
95 |
+
split: test
|
96 |
+
args:
|
97 |
+
language: en
|
98 |
+
metrics:
|
99 |
+
- name: Test DER
|
100 |
+
type: der
|
101 |
+
value: 2.03
|
102 |
+
- task:
|
103 |
+
type: Speaker Diarization
|
104 |
+
name: speaker-diarization
|
105 |
+
dataset:
|
106 |
+
name: CH109
|
107 |
+
type: callhome_diarization
|
108 |
+
config: oracle-vad-known-number-of-speakers
|
109 |
+
split: test
|
110 |
+
args:
|
111 |
+
language: en
|
112 |
+
metrics:
|
113 |
+
- name: Test DER
|
114 |
+
type: der
|
115 |
+
value: 1.19
|
116 |
+
- task:
|
117 |
+
type: Speaker Diarization
|
118 |
+
name: speaker-diarization
|
119 |
+
dataset:
|
120 |
+
name: CH109
|
121 |
+
type: callhome_diarization
|
122 |
+
config: oracle-vad-unknown-number-of-speakers
|
123 |
+
split: test
|
124 |
+
args:
|
125 |
+
language: en
|
126 |
+
metrics:
|
127 |
+
- name: Test DER
|
128 |
+
type: der
|
129 |
+
value: 1.63
|
130 |
+
- task:
|
131 |
+
type: Speaker Diarization
|
132 |
+
name: speaker-diarization
|
133 |
+
dataset:
|
134 |
+
name: NIST SRE 2000
|
135 |
+
type: nist-sre_diarization
|
136 |
+
config: oracle-vad-known-number-of-speakers
|
137 |
+
split: test
|
138 |
+
args:
|
139 |
+
language: en
|
140 |
+
metrics:
|
141 |
+
- name: Test DER
|
142 |
+
type: der
|
143 |
+
value: 6.73
|
144 |
+
- task:
|
145 |
+
type: Speaker Diarization
|
146 |
+
name: speaker-diarization
|
147 |
+
dataset:
|
148 |
+
name: NIST SRE 2000
|
149 |
+
type: nist-sre_diarization
|
150 |
+
config: oracle-vad-unknown-number-of-speakers
|
151 |
+
split: test
|
152 |
+
args:
|
153 |
+
language: en
|
154 |
+
metrics:
|
155 |
+
- name: Test DER
|
156 |
+
type: der
|
157 |
+
value: 5.38
|
158 |
---
|
159 |
+
|
160 |
+
# NVIDIA TitaNet-Large (en-US)
|
161 |
+
|
162 |
+
<style>
|
163 |
+
img {
|
164 |
+
display: inline;
|
165 |
+
}
|
166 |
+
</style>
|
167 |
+
|
168 |
+
| [![Model architecture](https://img.shields.io/badge/Model_Arch-TitaNet--Large-lightgrey#model-badge)](#model-architecture)
|
169 |
+
| [![Model size](https://img.shields.io/badge/Params-23M-lightgrey#model-badge)](#model-architecture)
|
170 |
+
| [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)
|
171 |
+
|
172 |
+
|
173 |
+
This model extracts speaker embeddings from given speech, which are backbone for speaker verification and diarization tasks.
|
174 |
+
It is a "large" version of TitaNet (around 23M parameters) models.
|
175 |
+
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/asr/speaker_recognition/models.html#titanet) for complete architecture details.
|
176 |
+
|
177 |
+
## NVIDIA NeMo: Training
|
178 |
+
|
179 |
+
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
|
180 |
+
```
|
181 |
+
pip install nemo_toolkit['all']
|
182 |
+
```
|
183 |
+
|
184 |
+
## How to Use this Model
|
185 |
+
|
186 |
+
The model is available for use in the NeMo toolkit [3] and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
|
187 |
+
|
188 |
+
### Automatically instantiate the model
|
189 |
+
|
190 |
+
```python
|
191 |
+
import nemo.collections.asr as nemo_asr
|
192 |
+
speaker_model = nemo_asr.models.EncDecSpeakerLabelModel.from_pretrained("nvidia/speakerverification_en_titanet_large")
|
193 |
+
```
|
194 |
+
|
195 |
+
### Embedding Extraction
|
196 |
+
First, let's get a sample
|
197 |
+
```
|
198 |
+
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
|
199 |
+
```
|
200 |
+
Then do:
|
201 |
+
```
|
202 |
+
emb = speaker_model.get_embedding('2086-149220-0033.wav']
|
203 |
+
```
|
204 |
+
|
205 |
+
### Verifying two utterances (Speaker Verification)
|
206 |
+
let's get another sample
|
207 |
+
```
|
208 |
+
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
|
209 |
+
```
|
210 |
+
Now to check if two audio files are from same speaker or not, simply do:
|
211 |
+
```
|
212 |
+
speaker_model.verify_speakers('path/to/one/audio_file','path/to/other/audio_file')
|
213 |
+
```
|
214 |
+
|
215 |
+
### Extracting Embeddings for more audio files
|
216 |
+
|
217 |
+
To extract embeddings from a bunch of audio files:
|
218 |
+
|
219 |
+
Write audio files to a `manifest.json` file with lines as in format:
|
220 |
+
|
221 |
+
```json
|
222 |
+
{"audio_filepath": "<absolute path to dataset>/audio_file.wav", "duration": "duration of file in sec", "label": "speaker_id"}
|
223 |
+
```
|
224 |
+
Then running following script will extract embeddings and writes to current working directory:
|
225 |
+
```shell
|
226 |
+
python <NeMo_root>/examples/speaker_tasks/recognition/extract_speaker_embeddings.py --manifest=manifest.json
|
227 |
+
```
|
228 |
+
|
229 |
+
### Input
|
230 |
+
|
231 |
+
This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
|
232 |
+
|
233 |
+
### Output
|
234 |
+
|
235 |
+
This model provides speaker embeddings for an audio file.
|
236 |
+
|
237 |
+
## Model Architecture
|
238 |
+
|
239 |
+
TitaNet model is a depth-wise separable conv1D model [1] for Speaker Verification and diarization tasks. You may find more info on the detail of this model here: [TitaNet-Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speaker_recognition/models.html).
|
240 |
+
|
241 |
+
## Training
|
242 |
+
|
243 |
+
The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/speaker_tasks/recognition/speaker_reco.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/speaker_tasks/recognition/conf/titanet-large.yaml).
|
244 |
+
|
245 |
+
### Datasets
|
246 |
+
|
247 |
+
All the models in this collection are trained on a composite dataset comprising several thousand hours of English speech:
|
248 |
+
|
249 |
+
- Voxceleb-1
|
250 |
+
- Voxceleb-2
|
251 |
+
- Fisher
|
252 |
+
- Switchboard
|
253 |
+
- Librispeech
|
254 |
+
- SRE (2004-2010)
|
255 |
+
|
256 |
+
## Performance
|
257 |
+
|
258 |
+
Performances of the these models are reported in terms of Equal Error Rate (EER%) on speaker verification evaluation trial files and as Diarization Error Rate (DER%) on diarization test sessions.
|
259 |
+
|
260 |
+
* Speaker Verification (EER%)
|
261 |
+
| Version | Model | Model Size | VoxCeleb1 (Cleaned trial file) |
|
262 |
+
|---------|--------------|-----|---------------|
|
263 |
+
| 1.10.0 | TitaNet-Large | 23M | 0.66 |
|
264 |
+
|
265 |
+
* Speaker Diarization (DER%)
|
266 |
+
| Version | Model | Model Size | Evaluation Condition | NIST SRE 2000 | AMI (Lapel) | AMI (MixHeadset) | CH109 |
|
267 |
+
|---------|--------------|-----|----------------------|---------------|-------------|------------------|-------|
|
268 |
+
| 1.10.0 | TitaNet-Large | 23M | Oracle VAD KNOWN # of Speakers | 6.73 | 2.03 | 1.73 | 1.19 |
|
269 |
+
| 1.10.0 | TitaNet-Large | 23M | Oracle VAD UNKNOWN # of Speakers | 5.38 | 2.03 | 1.89 | 1.63 |
|
270 |
+
|
271 |
+
## Limitations
|
272 |
+
This model is trained on both telephonic and non-telephonic speech from voxceleb datasets, Fisher and switch board. If your domain of data differs from trained data or doesnot show relatively good performance consider finetuning for that speech domain.
|
273 |
+
|
274 |
+
## NVIDIA Riva: Deployment
|
275 |
+
|
276 |
+
[NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
|
277 |
+
Additionally, Riva provides:
|
278 |
+
|
279 |
+
* World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
|
280 |
+
* Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
|
281 |
+
* Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
|
282 |
+
|
283 |
+
Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
|
284 |
+
Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
|
285 |
+
|
286 |
+
## References
|
287 |
+
[1] [TitaNet: Neural Model for Speaker Representation with 1D Depth-wise Separable convolutions and global context](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9746806)
|
288 |
+
[2] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
|
289 |
+
|
290 |
+
## Licence
|
291 |
+
|
292 |
+
License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
|