yzhang123 commited on
Commit
f401cbc
·
1 Parent(s): 95d0ad1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +179 -0
README.md CHANGED
@@ -1,3 +1,182 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - de
4
+ library_name: nemo
5
+ datasets:
6
+ - VoxPopuli (DE)
7
+ - multilingual_librispeech
8
+ - mozilla-foundation/common_voice_7_0
9
+ thumbnail: null
10
+ tags:
11
+ - automatic-speech-recognition
12
+ - speech
13
+ - audio
14
+ - CTC
15
+ - Conformer
16
+ - Transformer
17
+ - pytorch
18
+ - NeMo
19
+ - hf-asr-leaderboard
20
  license: cc-by-4.0
21
+ widget:
22
+ - example_title: Librispeech sample 1
23
+ src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
24
+ - example_title: Librispeech sample 2
25
+ src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
26
+ model-index:
27
+ - name: stt_de_conformer_transducer_large
28
+ results:
29
+ - task:
30
+ type: Automatic Speech Recognition
31
+ name: automatic-speech-recognition
32
+ dataset:
33
+ name: Multilingual LibriSpeech
34
+ type: facebook/multilingual_librispeech
35
+ config: german
36
+ split: test
37
+ args:
38
+ language: de
39
+ metrics:
40
+ - name: Test WER
41
+ type: wer
42
+ value: 3.85
43
+ - task:
44
+ type: Automatic Speech Recognition
45
+ name: automatic-speech-recognition
46
+ dataset:
47
+ name: Mozilla Common Voice 7.0
48
+ type: mozilla-foundation/common_voice_7_0
49
+ config: de
50
+ split: test
51
+ args:
52
+ language: de
53
+ metrics:
54
+ - name: Test WER
55
+ type: wer
56
+ value: 4.93
57
+ - task:
58
+ type: Automatic Speech Recognition
59
+ name: automatic-speech-recognition
60
+ dataset:
61
+ name: Vox Populi
62
+ type: polinaeterna/voxpopuli
63
+ args:
64
+ language: de
65
+ metrics:
66
+ - name: Test WER
67
+ type: wer
68
+ value: 5.70
69
  ---
70
+
71
+ # NVIDIA Conformer-Transducer Large (de)
72
+
73
+ <style>
74
+ img {
75
+ display: inline;
76
+ }
77
+ </style>
78
+
79
+ | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture)
80
+ | [![Model size](https://img.shields.io/badge/Params-600M-lightgrey#model-badge)](#model-architecture)
81
+ | [![Language](https://img.shields.io/badge/Language-en--US-lightgrey#model-badge)](#datasets)
82
+
83
+
84
+ This model transcribes speech in lower case German alphabet along with spaces.
85
+ It is a "large" versions of Conformer-Transducer (around 120M parameters) model.
86
+ See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details.
87
+
88
+ ## NVIDIA NeMo: Training
89
+
90
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
91
+ ```
92
+ pip install nemo_toolkit['all']
93
+ ```
94
+
95
+ ## How to Use this Model
96
+
97
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
98
+
99
+ ### Automatically instantiate the model
100
+
101
+ ```python
102
+ import nemo.collections.asr as nemo_asr
103
+ asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_de_conformer_transducer_large")
104
+ ```
105
+
106
+ ### Transcribing using Python
107
+ First, let's get a sample
108
+ ```
109
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
110
+ ```
111
+ Then simply do:
112
+ ```
113
+ asr_model.transcribe(['2086-149220-0033.wav'])
114
+ ```
115
+
116
+ ### Transcribing many audio files
117
+
118
+ ```shell
119
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
120
+ pretrained_name="nvidia/stt_de_conformer_transducer_large"
121
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
122
+ ```
123
+
124
+ ### Input
125
+
126
+ This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
127
+
128
+ ### Output
129
+
130
+ This model provides transcribed speech as a string for a given audio sample.
131
+
132
+ ## Model Architecture
133
+
134
+ Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html).
135
+
136
+ ## Training
137
+
138
+ The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_ctc_bpe.yaml).
139
+
140
+ The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
141
+
142
+ ### Datasets
143
+
144
+ All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of several thousand hours of German speech:
145
+
146
+ - VoxPopuli (DE) 200 hrs subset
147
+ - Multilingual Librispeech (MLS DE) - 1500 hrs subset
148
+ - Mozilla Common Voice (v7.0)
149
+
150
+ Note: older versions of the model may have trained on smaller set of datasets.
151
+
152
+ ## Performance
153
+
154
+ The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
155
+
156
+ | Version | Tokenizer | Vocabulary Size | MCV7.0 dev | MCV7.0 test | MLS dev | MLS test | Voxpopuli dev | Voxpopuli test |
157
+ |---------|-----------------------|-----------------|---------------|---------------|------------|-----------|------------|----------------|
158
+ | 1.6.0 | SentencePiece Unigram | 1024 | 4.40 | 4.93 | 3.22 | 3.85 | 11.04 | 8.85 |
159
+
160
+ ## Limitations
161
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
162
+
163
+ ## NVIDIA Riva: Deployment
164
+
165
+ [NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
166
+ Additionally, Riva provides:
167
+
168
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
169
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
170
+ * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
171
+
172
+ Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
173
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
174
+
175
+ ## References
176
+ [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
177
+ [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
178
+ [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
179
+
180
+ ## Licence
181
+
182
+ License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.