File size: 7,797 Bytes
f6dc44f
07673ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ebca04
07673ae
 
 
 
 
 
 
 
 
 
 
f6dc44f
07673ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6dc44f
07673ae
 
9f175ab
07673ae
 
 
 
 
 
 
 
1fd5f2e
 
3e17835
1fd5f2e
07673ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e17835
 
 
07673ae
 
 
 
 
 
 
 
 
 
 
 
c23e138
07673ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
language:
- en
library_name: nemo
datasets:
- librispeech_asr
- fisher_corpus
- Switchboard-1
- WSJ-0
- WSJ-1
- National Singapore Corpus Part 1
- National Singapore Corpus Part 6
- vctk
- VoxPopuli (EN)
- Europarl-ASR (EN)
- Multilingual LibriSpeech (2000 hours)
- mozilla-foundation/common_voice_8_0
- MLCommons/peoples_speech
thumbnail: null
tags:
- automatic-speech-recognition
- speech
- audio
- CTC
- Conformer
- Transformer
- pytorch
- NeMo
- hf-asr-leaderboard
license: cc-by-4.0
widget:
- example_title: Librispeech sample 1
  src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
  src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: stt_en_conformer_transducer_xlarge
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: LibriSpeech (clean)
      type: librispeech_asr
      config: clean
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 1.62
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: LibriSpeech (other)
      type: librispeech_asr
      config: other
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 3.01
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Multilingual LibriSpeech
      type: facebook/multilingual_librispeech
      config: english
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 5.32
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 7.0
      type: mozilla-foundation/common_voice_7_0
      config: en
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 5.13
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 8.0
      type: mozilla-foundation/common_voice_8_0
      config: en
      split: test
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 6.46
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Wall Street Journal 92
      type: wsj_0
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 1.17
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Wall Street Journal 93
      type: wsj_1
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 2.05
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: National Singapore Corpus
      type: nsc_part_1
      args:
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 5.70
---
## Model Overview
This model transcribes speech in lower case English alphabet along with spaces and apostrophes.
It is a "extra-large" versions of Conformer-Transducer (around 600M parameters) model.  

## NVIDIA NeMo: Training

To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
```
pip install nemo_toolkit['all']
``` 

## NVIDIA Riva: Deployment

[CTC-based Conformers](https://huggingface.co/nvidia/stt_en_conformer_ctc_large) are supported by Riva today. This model, as well as other RNNT-based models, will be supported by future versions of [NVIDIA Riva](https://developer.nvidia.com/riva). 

## How to Use this Model

The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.

### Automatically instantiate the model

```python
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
```

### Transcribing using Python
First, let's get a sample
```
wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
```
Then simply do:
```
asr_model.transcribe(['2086-149220-0033.wav'])
```

### Transcribing many audio files

```shell
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py 
 pretrained_name="nvidia/stt_en_conformer_transducer_xlarge" 
 audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
```

### Input

This model accepts 16000 KHz Mono-channel Audio (wav files) as input.

### Output

This model provides transcribed speech as a string for a given audio sample.

## Model Architecture

Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-CTC Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html). 

## Training

The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_ctc/speech_to_text_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_ctc_bpe.yaml).

The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).

### Datasets

All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of several thousand hours of English speech:

- Librispeech 960 hours of English speech
- Fisher Corpus
- Switchboard-1 Dataset
- WSJ-0 and WSJ-1
- National Speech Corpus (Part 1, Part 6)
- VCTK
- VoxPopuli (EN)
- Europarl-ASR (EN)
- Multilingual Librispeech (MLS EN) - 2,000 hrs subset
- Mozilla Common Voice (v8.0)
- People's Speech  - 12,000 hrs subset

Note: older versions of the model may have trained on smaller set of datasets.

## Performance

The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.

| Version | Tokenizer | Vocabulary Size | LS test-other | LS test-clean | WSJ Eval92 | WSJ Dev93 | NSC Part 1 |  MLS Test | MLS Dev | MCV Test 8.0 | Train Dataset |
|---------|-----------------------|-----------------|---------------|---------------|------------|-----------|-----|-------|------|----|------|
| 1.10.0 | SentencePiece Unigram | 1024 | 3.01 | 1.62 | 1.17 | 2.05 | 5.70 | 5.32 | 4.59 | 6.46 | NeMo ASRSET 3.0 |

## Limitations
Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.

## References
[1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
[2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
[3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)

## Licence

License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.