lilgrigs commited on
Commit
05aaf07
·
verified ·
1 Parent(s): 971bd3d

add model card

Browse files
Files changed (1) hide show
  1. README.md +443 -0
README.md ADDED
@@ -0,0 +1,443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ datasets:
4
+ - librispeech_asr
5
+ - fisher_corpus
6
+ - Switchboard-1
7
+ - WSJ-0
8
+ - WSJ-1
9
+ - National-Singapore-Corpus-Part-1
10
+ - National-Singapore-Corpus-Part-6
11
+ - vctk
12
+ - voxpopuli
13
+ - europarl
14
+ - multilingual_librispeech
15
+ - mozilla-foundation/common_voice_8_0
16
+ - MLCommons/peoples_speech
17
+ language:
18
+ - en
19
+ pipeline_tag: automatic-speech-recognition
20
+ library_name: NeMo
21
+ metrics:
22
+ - WER
23
+ - CER
24
+ tags:
25
+ - ASR
26
+ - English
27
+ - Conformer
28
+ - Transducer
29
+ - CTC
30
+ - NeMo
31
+ - hf-asr-leaderboard
32
+ - speech
33
+ - audio
34
+ - pytorch
35
+ model-index:
36
+ - name: stt_en_fastconformer_tdt_large
37
+ results:
38
+ - task:
39
+ name: Automatic Speech Recognition
40
+ type: automatic-speech-recognition
41
+ dataset:
42
+ name: LibriSpeech test clean
43
+ type: librispeech_asr
44
+ split: test-clean
45
+ metrics:
46
+ - name: WER
47
+ type: wer
48
+ value: 1.83
49
+ - task:
50
+ name: Automatic Speech Recognition
51
+ type: automatic-speech-recognition
52
+ dataset:
53
+ name: LibriSpeech test other
54
+ type: librispeech_asr
55
+ split: test-other
56
+ metrics:
57
+ - name: WER
58
+ type: wer
59
+ value: 3.73
60
+ - task:
61
+ name: Automatic Speech Recognition
62
+ type: automatic-speech-recognition
63
+ dataset:
64
+ name: MCV11 test
65
+ type: mozilla-foundation/common_voice_8_0
66
+ split: test
67
+ metrics:
68
+ - name: WER
69
+ type: wer
70
+ value: 6.38
71
+ - task:
72
+ name: Automatic Speech Recognition
73
+ type: automatic-speech-recognition
74
+ dataset:
75
+ name: MLS test
76
+ type: multilingual_librispeech
77
+ split: test
78
+ metrics:
79
+ - name: WER
80
+ type: wer
81
+ value: 4.59
82
+ - task:
83
+ name: Automatic Speech Recognition
84
+ type: automatic-speech-recognition
85
+ dataset:
86
+ name: NSC1 test
87
+ type: National-Singapore-Corpus-Part-1
88
+ split: test
89
+ metrics:
90
+ - name: WER
91
+ type: wer
92
+ value: 4.43
93
+ - task:
94
+ name: Automatic Speech Recognition
95
+ type: automatic-speech-recognition
96
+ dataset:
97
+ name: PS
98
+ type: MLCommons/peoples_speech
99
+ split: test
100
+ metrics:
101
+ - name: WER
102
+ type: wer
103
+ value: 11.34
104
+ - task:
105
+ name: Automatic Speech Recognition
106
+ type: automatic-speech-recognition
107
+ dataset:
108
+ name: Voxpopuli test
109
+ type: voxpopuli
110
+ split: test
111
+ metrics:
112
+ - name: WER
113
+ type: wer
114
+ value: 5.40
115
+ - task:
116
+ name: Automatic Speech Recognition
117
+ type: automatic-speech-recognition
118
+ dataset:
119
+ name: Fisher test
120
+ type: fisher_corpus
121
+ split: test
122
+ metrics:
123
+ - name: WER
124
+ type: wer
125
+ value: 9.71
126
+ ---
127
+
128
+
129
+ STT En FastConformer TDT Large model transcribes speech in lowercase English without punctuation marks. It is a "large" version of FastConformer TDT (around 115M parameters) model. See the section [Model Architecture](#Model-Architecture) and [NeMo documentation](https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/asr/models.html#fast-conformer) for complete architecture details.
130
+
131
+ This model is ready for commercial and non-commercial use.
132
+
133
+ ## License
134
+
135
+ License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
136
+
137
+ ## References
138
+
139
+ [1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
140
+
141
+ [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
142
+
143
+ [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
144
+
145
+ [4] [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
146
+
147
+ <!-- ## NVIDIA NeMo: Training
148
+
149
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo).
150
+ We recommend you install it after you've installed the latest Pytorch version.
151
+ ```
152
+ pip install nemo_toolkit['all']
153
+ ```
154
+ -->
155
+ ## Model Architecture
156
+
157
+ FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling.
158
+ The model is trained in a multitask setup with hybrid Transducer decoder (RNNT) and Connectionist Temporal Classification (CTC) loss.
159
+ You may find more information on the details of FastConformer here: [Fast-Conformer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).
160
+
161
+ The model utilizes a [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece) [2] tokenizer with a vocabulary size of 1024.
162
+
163
+ ### Input
164
+ - **Input Type:** Audio
165
+ - **Input Format(s):** .wav files
166
+ - **Input Parameter(s):** Two Dimensional (1D)
167
+ - **Other Properties Related to Input:** 16000 Hz Mono-channel Audio, Pre-Processing Not Needed
168
+
169
+ ### Output
170
+
171
+ This model provides transcribed speech as a string for a given audio sample.
172
+ - **Output Type**: Text
173
+ - **Output Format:** String
174
+ - **Output Parameters:** One Dimensional (1D)
175
+ - **Other Properties Related to Output:** May Need Inverse Text Normalization; Does Not Handle Special Characters; Outputs text in lowercase English without punctuation marks
176
+
177
+ ## Limitations
178
+
179
+ The model is non-streaming and outputs the speech as a string without punctuation and capitalization.
180
+ Not recommended for word-for-word transcription and punctuation as accuracy varies based on the characteristics of input audio (unrecognized word, accent, noise, speech type, and context of speech).
181
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on.
182
+
183
+ ## How to Use this Model
184
+
185
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
186
+
187
+ ### Automatically instantiate the model
188
+
189
+ ```python
190
+ import nemo.collections.asr as nemo_asr
191
+ asr_model = nemo_asr.models.EncDecRNNTModel.from_pretrained(model_name="nvidia/stt_en_fastconformer_tdt")
192
+ ```
193
+ ### Transcribing using Python
194
+ First, let's get a sample
195
+ ```
196
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
197
+ ```
198
+ Then simply do:
199
+ ```
200
+ asr_model.transcribe(['2086-149220-0033.wav'])
201
+ ```
202
+
203
+ ### Transcribing many audio files
204
+
205
+ ```shell
206
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
207
+ pretrained_name="nvidia/stt_en_fastconformer_tdt"
208
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
209
+ ```
210
+
211
+ ## Training
212
+
213
+ The [NVIDIA NeMo Toolkit] [3] was used for training the model.
214
+ The model is trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py).
215
+
216
+ The tokenizer for this model was built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
217
+
218
+ ## Training, Testing, and Evaluation Datasets
219
+ ### Training Datasets
220
+ The model is trained on composite dataset comprising of around 24k hours of English speech:
221
+ - [Librispeech](https://openslr.elda.org/145/) [960h]
222
+ - Data Collection Method: Human
223
+ - Labeling Method: Human
224
+
225
+ - [Fisher Corpus](https://catalog.ldc.upenn.edu/LDC2004S13) [1900h]
226
+ - Data Collection Method: Human
227
+ - Labeling Method: Human
228
+
229
+ - [Switchboard-1 Dataset](https://catalog.ldc.upenn.edu/LDC97S62) [310h]
230
+ - Data Collection Method: Human
231
+ - Labeling Method: Human
232
+
233
+ - [WSJ-0 and WSJ-1](https://catalog.ldc.upenn.edu/LDC93S6A) [80h]
234
+ - Data Collection Method: Human
235
+ - Labeling Method: Human
236
+
237
+ - [National Speech Corpus Part 1](https://www.imda.gov.sg/about-imda/emerging-technologies-and-research/artificial-intelligence/national-speech-corpus) [1850h]
238
+ - Data Collection Method: Human
239
+ - Labeling Method: Human
240
+
241
+ - [National Speech Corpus Part 6](https://www.imda.gov.sg/about-imda/emerging-technologies-and-research/artificial-intelligence/national-speech-corpus) [950h]
242
+ - Data Collection Method: Human
243
+ - Labeling Method: Human
244
+
245
+ - [VCTK](https://datashare.ed.ac.uk/handle/10283/2950) [80h]
246
+ - Data Collection Method: Human
247
+ - Labeling Method: Human
248
+
249
+ - [VoxPopuli (EN)](https://github.com/facebookresearch/voxpopuli) [350h]
250
+ - Data Collection Method: Automated
251
+ - Labeling Method: Automated
252
+
253
+ - [Europarl-ASR EN](https://www.mllp.upv.es/git-pub/ggarces/Europarl-ASR/) [1000h]
254
+ - Data Collection Method: Automated
255
+ - Labeling Method: Automated
256
+
257
+ - [Multilingual Librispeech (MLS EN)](https://www.openslr.org/94/) [2000h]
258
+ - Data Collection Method: Human
259
+ - Labeling Method: Human
260
+
261
+ - [Mozilla Common Voice 11.0](https://commonvoice.mozilla.org/en/datasets) [2000h]
262
+ - Data Collection Method: Human
263
+ - Labeling Method: Human
264
+
265
+ - [People's Speech](https://huggingface.co/datasets/MLCommons/peoples_speech) [12000h]
266
+ - Data Collection Method: Automated
267
+ - Labeling Method: Automated
268
+
269
+ ### Test Datasets
270
+ - [Librispeech](https://openslr.elda.org/145/)
271
+ - Data Collection Method: Human
272
+ - Labeling Method: Human
273
+
274
+ - [Mozilla Common Voice 11.0](https://commonvoice.mozilla.org/en/datasets)
275
+ - Data Collection Method: Human
276
+ - Labeling Method: Human
277
+
278
+ - [Multilingual Librispeech (MLS EN)](https://www.openslr.org/94/)
279
+ - Data Collection Method: Human
280
+ - Labeling Method: Human
281
+
282
+ - [National Speech Corpus Part 1](https://www.imda.gov.sg/about-imda/emerging-technologies-and-research/artificial-intelligence/national-speech-corpus)
283
+ - Data Collection Method: Human
284
+ - Labeling Method: Human
285
+
286
+ - [People's Speech](https://huggingface.co/datasets/MLCommons/peoples_speech)
287
+ - Data Collection Method: Automated
288
+ - Labeling Method: Automated
289
+
290
+ - [VoxPopuli (EN)](https://github.com/facebookresearch/voxpopuli)
291
+ - Data Collection Method: Automated
292
+ - Labeling Method: Automated
293
+
294
+ - [Fisher Corpus](https://catalog.ldc.upenn.edu/LDC2004S13)
295
+ - Data Collection Method: Human
296
+ - Labeling Method: Human
297
+
298
+ ### Evaluation Datasets
299
+ - [Librispeech](https://openslr.elda.org/145/)
300
+ - Data Collection Method: Human
301
+ - Labeling Method: Human
302
+
303
+ - [Mozilla Common Voice 11.0](https://commonvoice.mozilla.org/en/datasets)
304
+ - Data Collection Method: Human
305
+ - Labeling Method: Human
306
+
307
+ - [Multilingual Librispeech (MLS EN)](https://www.openslr.org/94/)
308
+ - Data Collection Method: Human
309
+ - Labeling Method: Human
310
+
311
+ - [National Speech Corpus Part 1](https://www.imda.gov.sg/about-imda/emerging-technologies-and-research/artificial-intelligence/national-speech-corpus)
312
+ - Data Collection Method: Human
313
+ - Labeling Method: Human
314
+
315
+ - [People's Speech](https://huggingface.co/datasets/MLCommons/peoples_speech)
316
+ - Data Collection Method: Automated
317
+ - Labeling Method: Automated
318
+
319
+ - [VoxPopuli (EN)](https://github.com/facebookresearch/voxpopuli)
320
+ - Data Collection Method: Automated
321
+ - Labeling Method: Automated
322
+
323
+ - [Fisher Corpus](https://catalog.ldc.upenn.edu/LDC2004S13)
324
+ - Data Collection Method: Human
325
+ - Labeling Method: Human
326
+
327
+ ## Software Integration
328
+
329
+ ### Runtime Engine
330
+ - Nemo 2.0.0
331
+
332
+ ### Supported Hardware Microarchitecture Compatibility:
333
+ - NVIDIA Ampere
334
+ - NVIDIA Blackwell
335
+ - NVIDIA Jetson
336
+ - NVIDIA Hopper
337
+ - NVIDIA Lovelace
338
+ - NVIDIA Pascal
339
+ - NVIDIA Turing
340
+ - NVIDIA Volta
341
+
342
+ ### Preferred Operating System
343
+ - Linux
344
+
345
+ ## Model Version:
346
+ 1.0
347
+
348
+ ## Inference:
349
+ **Engine:** N/A
350
+ **Test Hardware]:** A100-SXM4-80GB
351
+
352
+ ## Ethical Considerations
353
+ NVIDIA believes Trustworthy AI is a shared responsibility and we have established policies and practices to enable development for a wide array of AI applications.
354
+ When downloaded or used in accordance with our terms of service, developers should work with their internal model team to ensure this model meets requirements for the relevant industry and use case and addresses unforeseen product misuse.
355
+
356
+ For more detailed information on ethical considerations for this model, please see the Model Card++ Explainability, Bias, Safety & Security, and Privacy Subcards below.
357
+
358
+ Please report security vulnerabilities or NVIDIA AI Concerns [here](https://www.nvidia.com/en-us/support/submit-security-vulnerability/).
359
+
360
+ ## Explainability
361
+
362
+ - High-Level Application and Domain: Automatic Speech Recognition
363
+ - Model Type: Speech to text
364
+ - Intended Users: developers, researchers, and users interested in transcribing audio
365
+ - Output: transcription text for the given audio
366
+ - Describe how this model works: The model transcribes audio input into text for the English language
367
+ - Name the adversely impacted groups this has been tested to deliver comparable outcomes regardless of: N/A
368
+ -Technical Limitations:
369
+ The model is non-streaming and outputs the speech as a string without punctuation and capitalization.
370
+ Not recommended for word-for-word transcription and punctuation as accuracy varies based on the characteristics of input audio (unrecognized word, accent, noise, speech type, and context of speech).
371
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on.
372
+ - Verified to have met prescribed quality standards: Yes
373
+ - Performance Metrics: Word Error Rate (WER), Character Error Rate (CER), Real-Time Factor
374
+ - Potential Known Risks: Transcripts may not be 100% accurate. Accuracy varies based on the characteristics of input audio (Domain, Use Case, Accent, Noise, Speech Type, Context of speech, etcetera).
375
+ - Licensing: CC-BY-4.0
376
+
377
+ ### Performance
378
+
379
+ **Test Hardware:** A100-SXM4-80GB
380
+ **Batch Size:** 32
381
+ **Precision:** float32
382
+ **Use AMP:** False
383
+ **Matmul Precision:** High
384
+
385
+ The performance of Automatic Speech Recognition models is measured using Word Error Rate (WER) and Char Error Rate (CER).
386
+ Since this dataset is trained on multiple domains, it will generally perform well at transcribing audio in general.
387
+
388
+ The following tables summarize the performance of the available models in this collection with the Transducer decoder.
389
+ Performances of the ASR models are reported in terms of Word Error Rate (WER%) and Inverse Real-Time Factor (RTFx) with greedy decoding on test sets.
390
+
391
+ - **Version:** 1.0
392
+ - **Tokenizer:** SentencePiece Unigram
393
+ - **Vocabulary Size:** 1024
394
+
395
+
396
+ | Metric | LibriSpeech test clean | LibriSpeech test other | MCV11 test | MLS test | NSC1 test | PS | Voxpopuli test | Fisher test |
397
+ |------------------|------------------------|-------------------------|------------|----------|-----------|-------|----------------|-------------|
398
+ | WER (%) | 1.83 | 3.73 | 6.38 | 4.59 | 4.43 | 11.34 | 5.40 | 9.71 |
399
+ | CER (%) | 0.53 | 1.40 | 2.63 | 1.81 | 1.66 | 6.33 | 2.88 | 5.45 |
400
+ | RTFx | 1526 | 1496 | 1573 | 1841 | 1613 | 820 | 1625 | 1564 |
401
+
402
+
403
+ These are greedy WER numbers without external LM. More details on evaluation can be found at [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard) [4].
404
+
405
+ ## Bias
406
+ - Was the model trained with a specific accent? No
407
+ - Measures taken to mitigate unwanted bias? No
408
+ - Participation considerations from adversely impacted groups [protected classes]
409
+ (https://www.senate.ca.gov/content/protected-classes) in model design and testing: No
410
+
411
+ ## Privacy
412
+ - Generatable or reverse engineerable personal data? No
413
+ - Personal data used to create this model: N/A
414
+ - Was consent obtained for any personal data used: N/A
415
+ - How often is the training dataset reviewed?: Before Release
416
+ - Is a mechanism in place to honor data subject right of access or deletion of personal data? N/A
417
+ - If personal data was collected for the development of the model, was it collected directly by NVIDIA? N/A
418
+ - If personal data was collected for the development of the model by NVIDIA, do you maintain or have access to disclosures made to data subjects? N/A
419
+ - If personal data was collected for the development of this AI model, was it minimized to only what was required? N/A
420
+ - Is there dataset provenance? Yes
421
+ - Does data labeling (annotation, metadata) comply with privacy laws? Yes
422
+ - Is data compliant with data subject requests for data correction or removal, if such a request was made? No, not possible with externally-sourced data
423
+
424
+ ## Safety & Security
425
+ - Model Application: Automatic Speech Recognition
426
+ - Describe the life critical impact (if present): N/A
427
+ - Use Case Restrictions: Abide by CC-BY-4.0
428
+
429
+
430
+ ### Model and dataset restrictions:
431
+ The Principle of Least Privilege (PoLP) is applied limiting access for dataset generation and model development. Restrictions enforce dataset access during training and dataset license constraints adhered to.
432
+
433
+ ## NVIDIA Riva: Deployment
434
+
435
+ [NVIDIA Riva](https://developer.nvidia.com/riva) is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
436
+ Additionally, Riva provides:
437
+
438
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
439
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
440
+ * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
441
+
442
+ Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
443
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).