Automatic Speech Recognition
NeMo
PyTorch
Italian
speech
audio
Transducer
Conformer
Transformer
NeMo
hf-asr-leaderboard
Eval Results
igitman commited on
Commit
b838be3
·
1 Parent(s): f94c531

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +211 -0
README.md CHANGED
@@ -1,3 +1,214 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - it
4
+ library_name: nemo
5
+ datasets:
6
+ - facebook/voxpopuli
7
+ - facebook/multilingual_librispeech
8
+ - mozilla-foundation/common_voice_11_0
9
+ thumbnail: null
10
+ tags:
11
+ - automatic-speech-recognition
12
+ - speech
13
+ - audio
14
+ - Transducer
15
+ - Conformer
16
+ - Transformer
17
+ - pytorch
18
+ - NeMo
19
+ - hf-asr-leaderboard
20
  license: cc-by-4.0
21
+ model-index:
22
+ - name: stt_it_conformer_transducer_large
23
+ results:
24
+ - task:
25
+ type: Automatic Speech Recognition
26
+ name: speech-recognition
27
+ dataset:
28
+ name: common-voice-11-0
29
+ type: mozilla-foundation/common_voice_11_0
30
+ config: it
31
+ split: dev
32
+ args:
33
+ language: it
34
+ metrics:
35
+ - name: Dev WER
36
+ type: wer
37
+ value: 4.80
38
+ - task:
39
+ type: Automatic Speech Recognition
40
+ name: speech-recognition
41
+ dataset:
42
+ name: common-voice-11-0
43
+ type: mozilla-foundation/common_voice_11_0
44
+ config: it
45
+ split: test
46
+ args:
47
+ language: it
48
+ metrics:
49
+ - name: Test WER
50
+ type: wer
51
+ value: 5.24
52
+ - task:
53
+ type: Automatic Speech Recognition
54
+ name: automatic-speech-recognition
55
+ dataset:
56
+ name: Multilingual LibriSpeech
57
+ type: facebook/multilingual_librispeech
58
+ config: italian
59
+ split: dev
60
+ args:
61
+ language: it
62
+ metrics:
63
+ - name: Dev WER
64
+ type: wer
65
+ value: 14.62
66
+ - task:
67
+ type: Automatic Speech Recognition
68
+ name: automatic-speech-recognition
69
+ dataset:
70
+ name: Multilingual LibriSpeech
71
+ type: facebook/multilingual_librispeech
72
+ config: italian
73
+ split: test
74
+ args:
75
+ language: it
76
+ metrics:
77
+ - name: Test WER
78
+ type: wer
79
+ value: 12.18
80
+ - task:
81
+ type: Automatic Speech Recognition
82
+ name: speech-recognition
83
+ dataset:
84
+ name: VoxPopuli
85
+ type: facebook/voxpopuli
86
+ config: it
87
+ split: dev
88
+ args:
89
+ language: it
90
+ metrics:
91
+ - name: Dev WER
92
+ type: wer
93
+ value: 12.00
94
+ - task:
95
+ type: Automatic Speech Recognition
96
+ name: speech-recognition
97
+ dataset:
98
+ name: VoxPopuli
99
+ type: facebook/voxpopuli
100
+ config: it
101
+ split: test
102
+ args:
103
+ language: it
104
+ metrics:
105
+ - name: Test WER
106
+ type: wer
107
+ value: 15.15
108
  ---
109
+ # NVIDIA Conformer-Transducer Large (it)
110
+
111
+ <style>
112
+ img {
113
+ display: inline;
114
+ }
115
+ </style>
116
+
117
+ | [![Model architecture](https://img.shields.io/badge/Model_Arch-Conformer--Transducer-lightgrey#model-badge)](#model-architecture)
118
+ | [![Model size](https://img.shields.io/badge/Params-120M-lightgrey#model-badge)](#model-architecture)
119
+ | [![Language](https://img.shields.io/badge/Language-it-lightgrey#model-badge)](#datasets)
120
+
121
+
122
+ This model transcribes speech in lowercase Italian alphabet including spaces, and was trained on a composite dataset comprising of 487 hours of Italian speech. It is a "large" variant of Conformer-Transducer, with around 120 million parameters.
123
+ See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer-transducer) for complete architecture details.
124
+
125
+ ## NVIDIA NeMo: Training
126
+
127
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
128
+ ```
129
+ pip install nemo_toolkit['all']
130
+ ```
131
+
132
+ ## How to Use this Model
133
+
134
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
135
+
136
+ ### Automatically instantiate the model
137
+
138
+ ```python
139
+ import nemo.collections.asr as nemo_asr
140
+ asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_it_conformer_transducer_large")
141
+ ```
142
+
143
+ ### Transcribing using Python
144
+
145
+ Simply do:
146
+
147
+ ```
148
+ asr_model.transcribe(['sample.wav'])
149
+ ```
150
+
151
+ ### Transcribing many audio files
152
+
153
+ ```shell
154
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
155
+ pretrained_name="nvidia/stt_it_conformer_transducer_large"
156
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
157
+ ```
158
+
159
+ ### Input
160
+
161
+ This model accepts 16000 Hz Mono-channel Audio (wav files) as input.
162
+
163
+ ### Output
164
+
165
+ This model provides transcribed speech as a string for a given audio sample.
166
+
167
+ ## Model Architecture
168
+
169
+ Conformer-Transducer model is an autoregressive variant of Conformer model [1] for Automatic Speech Recognition which uses Transducer loss/decoding instead of CTC Loss. You may find more info on the detail of this model here: [Conformer-Transducer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html).
170
+
171
+ ## Training
172
+
173
+ The NeMo toolkit [3] was used for training these models for over several hundred epochs. These models are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_transducer/speech_to_text_rnnt_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/conformer/conformer_transducer_bpe.yaml).
174
+
175
+ The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
176
+
177
+ ### Datasets
178
+
179
+ All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of 487 hours of Italian speech:
180
+ - Mozilla Common Voice 11.0 (Italian) - 220 hours after data cleaning
181
+ - Multilingual LibriSpeech (Italian) - 214 hours after data cleaning
182
+ - VoxPopuli transcribed subset (Italian) - 53 hours after data cleaning
183
+
184
+ ## Performance
185
+
186
+ The list of the available models in this collection is shown in the following table. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
187
+
188
+ | Version | Tokenizer | Vocabulary Size | MCV 11.0 Dev | MCV 11.0 Test | MLS Dev | MLS Test | VoxPopuli Dev | VoxPopuli Test | Train Dataset |
189
+ |---------|-----------------------|-----------------|--------------|---------------|---------|----------|---------------|----------------|-----------------|
190
+ | 1.0.0 | SentencePiece Unigram | 1024 | 4.80 | 5.24 | 14.62 | 12.18 | 12.00 | 15.15 | NeMo ASRSET 2.0 |
191
+
192
+ ## Limitations
193
+ Since this model was trained on publicly available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech.
194
+
195
+ ## NVIDIA Riva: Deployment
196
+
197
+ [NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
198
+ Additionally, Riva provides:
199
+
200
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
201
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
202
+ * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
203
+
204
+ Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
205
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
206
+
207
+ ## References
208
+ - [1] [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
209
+ - [2] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
210
+ - [3] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
211
+
212
+ ## Licence
213
+
214
+ License to use this model is covered by the [CC-BY-4 License](https://creativecommons.org/licenses/by/4.0/legalcode) unless another License/Terms Of Use/EULA is clearly specified. By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4 License](https://creativecommons.org/licenses/by/4.0/legalcode).