--- license: llama3 base_model: meta-llama/Meta-Llama-3-8B tags: - axolotl - generated_from_trainer model-index: - name: Llama-3-8B-tulu-human-v2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: penfever/tulu-v2-flan-v2-cot-science type: sharegpt.load_ultrachat conversation: llama3 dataset_prepared_path: ./datasets/tulu-human output_dir: ./outputs/tulu-human sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: lm-evals wandb_entity: wandb_watch: wandb_name: Llama-3-8B-tulu-human wandb_log_model: hub_model_id: penfever/Llama-3-8B-tulu-human-v2 gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

[Visualize in Weights & Biases](https://wandb.ai/nyu-dice-lab/lm-evals/runs/rpepckaq) # Llama-3-8B-tulu-human-v2 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the penfever/tulu-v2-flan-v2-cot-science dataset. It uses the LLAMA-3 chat template. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1