File size: 12,270 Bytes
955e856
 
 
 
cc5e992
955e856
cc5e992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
955e856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b3a53
955e856
 
 
 
 
 
38b9cd6
955e856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd250b
955e856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d464fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d78f68d
 
 
3d464fa
 
 
 
 
 
 
 
 
955e856
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5858f6e
cc5e992
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
language:
- en
- es
license: apache-2.0
pipeline_tag: text-generation
model-index:
- name: occiglot-7b-es-en-instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 34.85
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=occiglot/occiglot-7b-es-en-instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 17.24
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=occiglot/occiglot-7b-es-en-instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 1.89
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=occiglot/occiglot-7b-es-en-instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 1.23
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=occiglot/occiglot-7b-es-en-instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 4.45
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=occiglot/occiglot-7b-es-en-instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 14.56
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=occiglot/occiglot-7b-es-en-instruct
      name: Open LLM Leaderboard
---

![image/png](https://huggingface.co/datasets/malteos/images/resolve/main/occiglot.medium.png)

# Occiglot-7B-ES-EN-Instruct

> A [polyglot](https://en.wikipedia.org/wiki/Multilingualism#In_individuals) language model for the [Occident](https://en.wikipedia.org/wiki/Occident).
> 

**Occiglot-7B-ES-EN-Instruct** is a the instruct version of [occiglot-7b-es-en](https://huggingface.co/occiglot/occiglot-7b-es-en), a generative language model with 7B parameters supporting the Spanish and English and trained by the [Occiglot Research Collective](https://occiglot.github.io/occiglot/).
It was trained on 160M tokens of additional multilingual and code instructions.
Note that the model was not safety aligned and might generate problematic outputs.

This is the first release of an ongoing open research project for multilingual language models. 
If you want to train a model for your own language or are working on evaluations, please contact us or join our [Discord server](https://discord.gg/wUpvYs4XvM). **We are open for collaborations!**


### Model details

- **Instruction tuned from:** [occiglot-7b-es-en](https://huggingface.co/occiglot/occiglot-7b-es-en)
- **Model type:** Causal decoder-only transformer language model
- **Languages:** English, Spanish, and code.
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
- **Compute resources:** [DFKI cluster](https://www.dfki.de/en/web)
- **Contributors:** Manuel Brack, Patrick Schramowski, Pedro Ortiz, Malte Ostendorff, Fabio Barth, Georg Rehm, Kristian Kersting
- **Research labs:** [Occiglot](https://occiglot.github.io/occiglot/) with support from [SAINT](https://www.dfki.de/en/web/research/research-departments/foundations-of-systems-ai) and [SLT](https://www.dfki.de/en/web/research/research-departments/speech-and-language-technology)
- **Contact:** [Discord](https://discord.gg/wUpvYs4XvM)

### How to use

The model was trained using the chatml instruction template. You can use the transformers chat template feature for interaction.
Since the generation relies on some randomness, we
set a seed for reproducibility:

```python
>>> from transformers import AutoTokenizer, MistralForCausalLM, set_seed
>>> tokenizer = AutoTokenizer.from_pretrained("occiglot/occiglot-7b-es-en-instruct")
>>> model = MistralForCausalLM.from_pretrained('occiglot/occiglot-7b-es-en-instruct')  # You may want to use bfloat16 and/or move to GPU here
>>> set_seed(42)
>>> messages = [
>>>    {"role": "system", 'content': 'You are a helpful assistant. Please give short and concise answers.'},
>>>    {"role": "user", "content": "¿quién es el presidente del gobierno español?"},
>>> ]
>>> tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_dict=False, return_tensors='pt',)
>>> set_seed(42)
>>> outputs = model.generate(tokenized_chat.to('cuda'), max_new_tokens=200,)
>>> tokenizer.decode(out[0][len(tokenized_chat[0]):])
'Actualmente el presidente del gobierno español es Pedro Sánchez Pérez-Castejón'
```

## Dataset

The training data was split evenly amongst Spanish and English based on the total number of tokens.

**English and Code**
 - [Open-Hermes-2B](https://huggingface.co/datasets/teknium/OpenHermes-2.5)


**Spanish**
 - [Mentor-ES](https://huggingface.co/datasets/projecte-aina/MentorES)
 - [Squad-es](https://huggingface.co/datasets/squad_es)
 - [OASST-2](https://huggingface.co/datasets/OpenAssistant/oasst2) (Spanish subset)
 - [Aya-Dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) (Spanish subset)

## Training settings

- Full instruction fine-tuning on 8xH100.
- 0.6 - 4 training epochs (depending on dataset sampling).
- Framework: [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
- Precision: bf16
- Optimizer: AdamW
- Global batch size: 128 (with 8192 context length)
- Cosine Annealing with Warmup


## Tokenizer

Tokenizer is unchanged from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).

## Evaluation

Preliminary evaluation results can be found below. 
Please note that the non-English results are based on partially machine-translated datasets and English prompts ([Belebele](https://huggingface.co/datasets/facebook/belebele) and [Okapi framework](https://github.com/nlp-uoregon/Okapi)) and thus should be interpreted with caution, e.g., biased towards English model performance.
Currently, we are working on more suitable benchmarks for Spanish, French, German, and Italian.

<details>
<summary>Evaluation results</summary>
  
### All 5 Languages

|                            |      avg |   arc_challenge |   belebele |   hellaswag |     mmlu |   truthfulqa |
|:---------------------------|---------:|----------------:|-----------:|------------:|---------:|-------------:|
| Occiglot-7b-eu5            | 0.516895 |        0.508109 |   0.675556 |    0.718963 | 0.402064 |     0.279782 |
| Occiglot-7b-eu5-instruct   | 0.537799 |        0.53632  |   0.691111 |    0.731918 | 0.405198 |     0.32445  |
| Occiglot-7b-es-en          | 0.483388 |        0.482949 |   0.606889 |    0.653902 | 0.398922 |     0.274277 |
| Occiglot-7b-es-en-instruct | 0.504023 |        0.494576 |   0.65     |    0.670847 | 0.406176 |     0.298513 |
| Lince-mistral-7b-it-es     | 0.543427 |        0.540222 |   0.745111 |    0.692931 | 0.426241 |     0.312629 |
| Mistral-7b-v0.1            | 0.547111 |        0.528937 |   0.768444 |    0.682516 | 0.448253 |     0.307403 |
| Mistral-7b-instruct-v0.2   | 0.56713  |        0.547228 |   0.741111 |    0.69455  | 0.422501 |     0.430262 |


### English

|                            |      avg |   arc_challenge |   belebele |   hellaswag |     mmlu |   truthfulqa |
|:---------------------------|---------:|----------------:|-----------:|------------:|---------:|-------------:|
| Occiglot-7b-eu5            | 0.59657  |        0.530717 |   0.726667 |    0.789882 | 0.531904 |     0.403678 |
| Occiglot-7b-eu5-instruct   | 0.617905 |        0.558874 |   0.746667 |    0.799841 | 0.535109 |     0.449    |
| Occiglot-7b-es-en          | 0.593609 |        0.543515 |   0.697778 |    0.788289 | 0.548355 |     0.390109 |
| Occiglot-7b-es-en-instruct | 0.615707 |        0.552048 |   0.736667 |    0.797451 | 0.557328 |     0.435042 |
| Leo-mistral-hessianai-7b   | 0.600949 |        0.522184 |   0.736667 |    0.777833 | 0.538812 |     0.429248 |
| Mistral-7b-v0.1            | 0.668385 |        0.612628 |   0.844444 |    0.834097 | 0.624555 |     0.426201 |
| Mistral-7b-instruct-v0.2   | 0.713657 |        0.637372 |   0.824444 |    0.846345 | 0.59201  |     0.668116 |

### Spanish

|                            |      avg |   arc_challenge_es |   belebele_es |   hellaswag_es |   mmlu_es |   truthfulqa_es |
|:---------------------------|---------:|-------------------:|--------------:|---------------:|----------:|----------------:|
| Occiglot-7b-eu5            | 0.533194 |           0.508547 |      0.676667 |       0.725411 |  0.499325 |        0.25602  |
| Occiglot-7b-eu5-instruct   | 0.548155 |           0.535043 |      0.68     |       0.737039 |  0.503525 |        0.285171 |
| Occiglot-7b-es-en          | 0.527264 |           0.529915 |      0.627778 |       0.72253  |  0.512749 |        0.243346 |
| Occiglot-7b-es-en-instruct | 0.5396   |           0.545299 |      0.636667 |       0.734372 |  0.524374 |        0.257288 |
| Lince-mistral-7b-it-es     | 0.547212 |           0.52906  |      0.721111 |       0.687967 |  0.512749 |        0.285171 |
| Mistral-7b-v0.1            | 0.554817 |           0.528205 |      0.747778 |       0.672712 |  0.544023 |        0.281369 |
| Mistral-7b-instruct-v0.2   | 0.568575 |           0.54188  |      0.73     |       0.685406 |  0.511699 |        0.373891 |

</details>

## Acknowledgements

The pre-trained model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/) which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)).
The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)
through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D).


## License

[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)

## See also

- https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01
- https://huggingface.co/NikolayKozloff/occiglot-7b-es-en-GGUF

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_occiglot__occiglot-7b-es-en-instruct)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |12.37|
|IFEval (0-Shot)    |34.85|
|BBH (3-Shot)       |17.24|
|MATH Lvl 5 (4-Shot)| 1.89|
|GPQA (0-shot)      | 1.23|
|MuSR (0-shot)      | 4.45|
|MMLU-PRO (5-shot)  |14.56|