Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +12 -12
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 253.80 +/- 25.59
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f38846fff70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3884703040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f38847030d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3884703160>", "_build": "<function ActorCriticPolicy._build at 0x7f38847031f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3884703280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3884703310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f38847033a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3884703430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f38847034c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3884703550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f38847035e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3884701a80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 229376, "_total_timesteps": 200000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678695281623410863, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpzXT3XX2M6osGOu4S29LzC2U485erYvQAAAAAAAIA/riq6vjdonr1yxYm+yrsIveAXnz4rLgy+AAAAAAAAAAD6YlO/N2wKvnBvxDwQG6i8cgMOvfq+jr0AAAAAAACAP8VV3r5rl5A+AE/DvuMSEb+pNsW9k1ujvQAAAAAAAAAAzbpivKwZmz/jwG28VI+vvhY0Sj0Qt5q9AAAAAAAAAADT+MA+pYLxPnb4tj5EVNK+wzQNPoN6+zwAAAAAAAAAAJD2t74BVaC8fRtIPHc6Ir344bM7ER+kvQAAAAAAAAAA0nijvqkXSbyrDtK8Zz/pPBv1yT2eLs07AAAAAAAAAAAN1ZK9uNqxOnrBsro0zuK7EtZ4O9rXubwAAAAAAAAAAJqovr07v8A/j2PLvixQWb2njDi9r5jIuwAAAAAAAAAATbUFPdXAgD/gr5o9XrKOvq8PwLvx6AE8AAAAAAAAAABOwiG/n2xEvtLLXj3DlI09+KATvngrpTwAAAAAAAAAADtNCb9O2tW8V/+rvD0hxDt3eEc+Mzp1OwAAAAAAAIA/jZbtvewvxDrXB6M9SbxzPCtrYrx28qw8AACAPwAAgD8yqq6+iPCsP7aoGL/OtqS+5cSDvhA7Tr0AAAAAAAAAANsnpr5xhyK7Y3DPPDuBlLrYjg07cYOnOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVORAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYobGE0G8DkCUhpRSlIwBbJRLnowBdJRHQHZALDqGDcx1fZQoaAZoCWgPQwhYkGYsmk7vv5SGlFKUaBVLqGgWR0B2QcPvrnkldX2UKGgGaAloD0MI3uNME7bzM8CUhpRSlGgVS5VoFkdAdkLNvOyE+XV9lChoBmgJaA9DCHy1ozhHdFHAlIaUUpRoFUvpaBZHQHZE854nndR1fZQoaAZoCWgPQwi+ZyRCI8dSwJSGlFKUaBVLbGgWR0B2RyIJqqOtdX2UKGgGaAloD0MIXtcv2A35TsCUhpRSlGgVS4NoFkdAdk5PbO/tY3V9lChoBmgJaA9DCL0cdt8x+DPAlIaUUpRoFUuZaBZHQHZVsjJMg2Z1fZQoaAZoCWgPQwjX3qeq0JBHwJSGlFKUaBVLmWgWR0B2WD5/LDAKdX2UKGgGaAloD0MIoPtyZrvGOcCUhpRSlGgVS7doFkdAdlqvWpZOi3V9lChoBmgJaA9DCACquHGL5UpAlIaUUpRoFU3oA2gWR0B2W6TY/Vy4dX2UKGgGaAloD0MIUG9GzVfZJECUhpRSlGgVS9NoFkdAdlxoZQ53knV9lChoBmgJaA9DCKPmq+RjXyVAlIaUUpRoFUuCaBZHQHZdolUp/gB1fZQoaAZoCWgPQwjpSC7/Ie0TwJSGlFKUaBVL3GgWR0B2YNLqUu+RdX2UKGgGaAloD0MI+RBUjV4N5T+UhpRSlGgVS3poFkdAdmE0zj3mFXV9lChoBmgJaA9DCNdMvtnmEETAlIaUUpRoFUuhaBZHQHZh9SIgvDh1fZQoaAZoCWgPQwiXrfVFQnsjQJSGlFKUaBVLsWgWR0B2Yt+8XenAdX2UKGgGaAloD0MI2/0qwHfNQMCUhpRSlGgVS7poFkdAdmpB6a9bo3V9lChoBmgJaA9DCNRIS+XtOC7AlIaUUpRoFUtsaBZHQHZs8SGrS3N1fZQoaAZoCWgPQwjMYIxIFKI7wJSGlFKUaBVLg2gWR0B2b1ljEvTPdX2UKGgGaAloD0MIhdIXQs5lQcCUhpRSlGgVS61oFkdAdnFduYQarHV9lChoBmgJaA9DCBWRYRVv+D7AlIaUUpRoFUuUaBZHQHZ5JkXk5p91fZQoaAZoCWgPQwgI51PHKupTwJSGlFKUaBVLlWgWR0B2evQRf4RFdX2UKGgGaAloD0MII9v5fmpcOcCUhpRSlGgVS4RoFkdAdnsySmqHXXV9lChoBmgJaA9DCHNH/8u12VTAlIaUUpRoFUuyaBZHQHZ+MHv+fiB1fZQoaAZoCWgPQwh81F+vsLJCwJSGlFKUaBVLkGgWR0B2gGyu6mO3dX2UKGgGaAloD0MIQwQcQpUaJcCUhpRSlGgVS51oFkdAdoKJ40Mw13V9lChoBmgJaA9DCHb7rDJTmjrAlIaUUpRoFUuoaBZHQHaEHdCVryl1fZQoaAZoCWgPQwjG98WlKs0dwJSGlFKUaBVLeGgWR0B2h2vX9R77dX2UKGgGaAloD0MIodY07zg1RcCUhpRSlGgVS+poFkdAdowJEYwZfnV9lChoBmgJaA9DCKrVV1cFxjPAlIaUUpRoFUujaBZHQHaOCtA9mpV1fZQoaAZoCWgPQwhkPbX66sIhwJSGlFKUaBVLomgWR0B2lSM5wOvudX2UKGgGaAloD0MIyCO4kbJlDkCUhpRSlGgVS7VoFkdAdpaIgvDgqHV9lChoBmgJaA9DCEXylUBKrkLAlIaUUpRoFUt1aBZHQHaXQtSQ5m11fZQoaAZoCWgPQwhXzXNEvpsrQJSGlFKUaBVLbGgWR0B2l3FQ2uPndX2UKGgGaAloD0MIgq59Ab0gPsCUhpRSlGgVS19oFkdAdpoplBhQWXV9lChoBmgJaA9DCKgd/pqsETLAlIaUUpRoFUtwaBZHQHaaf+jua4N1fZQoaAZoCWgPQwgw9l580aZDwJSGlFKUaBVLnmgWR0B2m6mj0tiAdX2UKGgGaAloD0MIn5PeN76oQsCUhpRSlGgVS6toFkdAdpx02cawU3V9lChoBmgJaA9DCI+pu7ILBhZAlIaUUpRoFUuhaBZHQHahOenQ6ZJ1fZQoaAZoCWgPQwg6BmSvd68ywJSGlFKUaBVLeGgWR0B2oWdBjWkKdX2UKGgGaAloD0MIQL0ZNV/RPMCUhpRSlGgVS3loFkdAdqMOKwY+CHV9lChoBmgJaA9DCFQbnIh+1SHAlIaUUpRoFUtsaBZHQHaoWKEWZZ11fZQoaAZoCWgPQwiY+nlTkb4xQJSGlFKUaBVN6ANoFkdAeH1ujh1klXV9lChoBmgJaA9DCOrQ6Xk3FgnAlIaUUpRoFUuqaBZHQHiMiIpH7P91fZQoaAZoCWgPQwjkSj0LQntCwJSGlFKUaBVLnmgWR0B4mxzq8lHCdX2UKGgGaAloD0MIUInrGFfAQsCUhpRSlGgVS4FoFkdAeKEZlFtsN3V9lChoBmgJaA9DCKMG0zB8LlHAlIaUUpRoFU0NAWgWR0B4pszfrKNidX2UKGgGaAloD0MIak/JObHXQECUhpRSlGgVTegDaBZHQHinnrUsnRd1fZQoaAZoCWgPQwi+2lGcoxxAwJSGlFKUaBVNDwFoFkdAeK67iADq4nV9lChoBmgJaA9DCDPeVnpt/EbAlIaUUpRoFU0kAWgWR0B4sgQYk3S8dX2UKGgGaAloD0MIWtjTDn+fQkCUhpRSlGgVTegDaBZHQHizf3JxNqR1fZQoaAZoCWgPQwiBzTl4JgZCwJSGlFKUaBVL0mgWR0B4vPkDIRywdX2UKGgGaAloD0MICOi+nNnyTECUhpRSlGgVTegDaBZHQHjFjPjXFtN1fZQoaAZoCWgPQwjbTlsjgtEqwJSGlFKUaBVLxWgWR0B4x8i7kGRndX2UKGgGaAloD0MIiV3b2y2FNcCUhpRSlGgVTQgBaBZHQHjnEjTrmhd1fZQoaAZoCWgPQwhZGY18XuEhQJSGlFKUaBVLtmgWR0B466ADq4YrdX2UKGgGaAloD0MIO6buyi6CScCUhpRSlGgVS5hoFkdAeR+NWEK3NXV9lChoBmgJaA9DCM8xIHu9EyDAlIaUUpRoFUuxaBZHQHkigbEP1+R1fZQoaAZoCWgPQwga3xeXqlgxQJSGlFKUaBVN6ANoFkdAeVUxri2lVXV9lChoBmgJaA9DCBKJQsu6O0fAlIaUUpRoFUu5aBZHQHlucrRSgoR1fZQoaAZoCWgPQwgceSCySBP5P5SGlFKUaBVLzGgWR0B5dydf9gnddX2UKGgGaAloD0MIXDrmPGMDQUCUhpRSlGgVTegDaBZHQHl8vm1YyO91fZQoaAZoCWgPQwiNmNnnMRRBQJSGlFKUaBVN6ANoFkdAeYbX+ERJ3HV9lChoBmgJaA9DCItwk1FlIC3AlIaUUpRoFU3oA2gWR0B5h38yeqaPdX2UKGgGaAloD0MIRgpl4es2UECUhpRSlGgVTegDaBZHQHmUdKyv9tN1fZQoaAZoCWgPQwgfMA+Z8v9RQJSGlFKUaBVN6ANoFkdAeZdwNsnAqXV9lChoBmgJaA9DCA1slWBxykdAlIaUUpRoFU3oA2gWR0B5n8iD/VAidX2UKGgGaAloD0MI3GgAb4EwP8CUhpRSlGgVS+toFkdAeaAi+L3sX3V9lChoBmgJaA9DCCno9pLGaDnAlIaUUpRoFUu6aBZHQHmmb8vVVgh1fZQoaAZoCWgPQwjCNAwfEXMuQJSGlFKUaBVLwGgWR0B5rmWdEsredX2UKGgGaAloD0MInrRwWYVbQsCUhpRSlGgVS7VoFkdAebiVyFPBSHV9lChoBmgJaA9DCPXWwFYJ4EZAlIaUUpRoFU3oA2gWR0B5vgwRGtp3dX2UKGgGaAloD0MIHJYGflSbPkCUhpRSlGgVS9JoFkdAeb/GeMAFPnV9lChoBmgJaA9DCBTpfk5BvkDAlIaUUpRoFUv1aBZHQHnAwkona391fZQoaAZoCWgPQwhjDKzj+IlRQJSGlFKUaBVN6ANoFkdAecmeF+NLlHV9lChoBmgJaA9DCBmMEYlCVz1AlIaUUpRoFU3oA2gWR0B5yn/Ot4iYdX2UKGgGaAloD0MIPUm6ZvIN/T+UhpRSlGgVS+VoFkdAec4mj0th/nV9lChoBmgJaA9DCLr0L0ll8lBAlIaUUpRoFU3oA2gWR0B50KAjIJZ4dX2UKGgGaAloD0MIJQUWwJTbTkCUhpRSlGgVTegDaBZHQHnTVlPJq7B1fZQoaAZoCWgPQwgvppnudRZAQJSGlFKUaBVN6ANoFkdAedyXUH6dlXV9lChoBmgJaA9DCP3dO2pM6BrAlIaUUpRoFUuTaBZHQHniVLJ0W/J1fZQoaAZoCWgPQwhzKhkAqtQ1wJSGlFKUaBVLxWgWR0B54q2PT5O8dX2UKGgGaAloD0MIejiB6bQYR8CUhpRSlGgVS6BoFkdAeeUpVCHARHV9lChoBmgJaA9DCHWRQln4XFFAlIaUUpRoFU3oA2gWR0B55fxoZhrndX2UKGgGaAloD0MIy9jQzf4ILUCUhpRSlGgVS51oFkdAeeuEBsANonV9lChoBmgJaA9DCGlSCrq9vk7AlIaUUpRoFUt4aBZHQHoHfTTfBN51fZQoaAZoCWgPQwjDZoALsm1GwJSGlFKUaBVLuWgWR0B6CefvnbItdX2UKGgGaAloD0MIa7sJvmn6/z+UhpRSlGgVS7toFkdAeg+Qsf7rLXV9lChoBmgJaA9DCDbK+s3EjEFAlIaUUpRoFUu7aBZHQHoRJLuhK151fZQoaAZoCWgPQwh5IR0ewvA3wJSGlFKUaBVL62gWR0B6GjwUg0TDdX2UKGgGaAloD0MINWPRdHYyMECUhpRSlGgVS2JoFkdAeim961LJ0XV9lChoBmgJaA9DCLxXrUz4QTRAlIaUUpRoFUuTaBZHQHo/2BFuvU11fZQoaAZoCWgPQwgu/yH99ulHwJSGlFKUaBVL/mgWR0B6cvvttyggdX2UKGgGaAloD0MITdwqiIFSRcCUhpRSlGgVTRkBaBZHQHpzRTwUg0V1fZQoaAZoCWgPQwgyzAna5OgoQJSGlFKUaBVLpmgWR0B6sytuDSPVdX2UKGgGaAloD0MIEK/rF+zdV0CUhpRSlGgVTegDaBZHQHqzkcwQDmt1fZQoaAZoCWgPQwgnamluhXhFQJSGlFKUaBVN6ANoFkdAer/Xcxj8UHV9lChoBmgJaA9DCPMBgc6kiFRAlIaUUpRoFU3oA2gWR0B6wFEKE385dX2UKGgGaAloD0MIFVRU/UqXH8CUhpRSlGgVS8hoFkdAesBctoSL63V9lChoBmgJaA9DCCxHyECerTFAlIaUUpRoFU3oA2gWR0B6yIUbkwN9dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f38846fff70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3884703040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f38847030d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3884703160>", "_build": "<function ActorCriticPolicy._build at 0x7f38847031f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3884703280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3884703310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f38847033a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3884703430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f38847034c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3884703550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f38847035e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3884701a80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678696028037959731, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI3hqr3hxIa648kcPdMAXDYA3Uk5QDNONQAAAAAAAAAAmqPLPOxVyrtRC5q7X9SRPMqsHb1lRHY9AACAPwAAgD8zHoy96jMCPjxWCD4tWJy+L0HZPCCbkTwAAAAAAAAAAJo3kL3/ONM+KvG9PWOuf768Zgc9ipfvvAAAAAAAAAAAJuutPn3ViT921ik+jRy6vrDWnj4Lw4K8AAAAAAAAAAAtWWI+7bgpP1/hh75EIHi+ALuePJW5n7sAAAAAAAAAAIDDCL1sC+a7tj6+O+aNmTxEfWG9DlOAPQAAgD8AAIA/gM0IvRSAjbqSt3s2LzaHMYta1jnK/pW1AACAPwAAgD/agvi9SGSeP6iQQb4Rbdy+1wkevgKmbL0AAAAAAAAAAM06Mr4D95Q/fUfBvlG56L6yI3u+lICrvQAAAAAAAAAAzcCKPBSsmroeeMc2fK2rMaP2wLrD/ei1AACAPwAAgD+at3M8rgmeusMJSrP/b+0upsWJOlpYyTMAAIA/AACAP01e3D0WOZU/SjAQPhCKt76uX9M9ZQr1vAAAAAAAAAAAmpsfPewtLj4NvhQ+tZ5Evs7LtT2N0nw8AAAAAAAAAAAAHkW9ElDvPubv7z3JPau+lnpHPGP5Az4AAAAAAAAAABpvCD16k3U+1sQxvFrbVr6NdcC8r81GPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIbByaNGJcECUhpRSlIwBbJRNNwGMAXSUR0CgVKazE74jdX2UKGgGaAloD0MIl3FTA82MckCUhpRSlGgVTSoBaBZHQKBU3Mtbs4V1fZQoaAZoCWgPQwgCLsiWJSFxQJSGlFKUaBVNWwFoFkdAoFTjnq3VkXV9lChoBmgJaA9DCJfJcDxfLXJAlIaUUpRoFU0nAWgWR0CgVSCRGMGYdX2UKGgGaAloD0MIXb9gN2xGcUCUhpRSlGgVTRwBaBZHQKBVLsuWa+h1fZQoaAZoCWgPQwhtADYgQgptQJSGlFKUaBVNDAFoFkdAoFWLeMyaeHV9lChoBmgJaA9DCJliDoLOUnBAlIaUUpRoFU0jAWgWR0CgVeiml67edX2UKGgGaAloD0MIs2DijyI6cECUhpRSlGgVTTEBaBZHQKBWYdBjWkJ1fZQoaAZoCWgPQwh5zas6K5pwQJSGlFKUaBVNPgFoFkdAoFZy9kBjnXV9lChoBmgJaA9DCN2YnrAEsHFAlIaUUpRoFU0PAWgWR0CgVxcox59mdX2UKGgGaAloD0MILSKKyZsHcECUhpRSlGgVTQgBaBZHQKBXIM98qnZ1fZQoaAZoCWgPQwiWkuUkFGttQJSGlFKUaBVNGAFoFkdAoFeLs+mm+HV9lChoBmgJaA9DCJCiztxDO3NAlIaUUpRoFU1JAWgWR0CgV6OloDgZdX2UKGgGaAloD0MIqgzjbhCQb0CUhpRSlGgVTQcBaBZHQKBX85Qxesx1fZQoaAZoCWgPQwixpx3+2rJyQJSGlFKUaBVNNgFoFkdAoFgICW/rSnV9lChoBmgJaA9DCLsM/+mGOXBAlIaUUpRoFU0nAWgWR0CgWEo/RmbtdX2UKGgGaAloD0MI4q/JGnUVcUCUhpRSlGgVTTsBaBZHQKBYpysjmjl1fZQoaAZoCWgPQwiP/SyW4qNyQJSGlFKUaBVNIgFoFkdAoFjoqkM1CXV9lChoBmgJaA9DCOvhy0RRe3FAlIaUUpRoFU0nAWgWR0CgWQ+UhV2idX2UKGgGaAloD0MIlwD8U6oDc0CUhpRSlGgVTVEBaBZHQKBZQogFHJ91fZQoaAZoCWgPQwiJmX0eY4NwQJSGlFKUaBVNUAFoFkdAoFlGrn1WbXV9lChoBmgJaA9DCK/uWGyTpkVAlIaUUpRoFUvcaBZHQKBZckleF+N1fZQoaAZoCWgPQwiBW3fzVJxwQJSGlFKUaBVNLwFoFkdAoFmNvuPV/nV9lChoBmgJaA9DCLCtn/5znHBAlIaUUpRoFU0nAWgWR0CgWctzS1E3dX2UKGgGaAloD0MIccYwJ2iXb0CUhpRSlGgVTTsBaBZHQKBaeyRjjJd1fZQoaAZoCWgPQwhLWBtj531zQJSGlFKUaBVNLgFoFkdAoFsaNS619nV9lChoBmgJaA9DCIbI6es5qnFAlIaUUpRoFU06AWgWR0CgWz5/kNnXdX2UKGgGaAloD0MI6fLmcC1QcUCUhpRSlGgVS/9oFkdAoFtbPGACn3V9lChoBmgJaA9DCFzJjo3ArnNAlIaUUpRoFU0gAWgWR0CgW2z1kDp1dX2UKGgGaAloD0MIW2H6XkMGckCUhpRSlGgVTU0BaBZHQKBcHgWrOqx1fZQoaAZoCWgPQwjZB1kWzHJxQJSGlFKUaBVNNQFoFkdAoFwy9AX2unV9lChoBmgJaA9DCEhRZ+6hYXBAlIaUUpRoFU00AWgWR0CgXLDE3sHCdX2UKGgGaAloD0MIBK4rZkQkcUCUhpRSlGgVTRMBaBZHQKBc3z+3pfR1fZQoaAZoCWgPQwh6whIPqBRzQJSGlFKUaBVNDAFoFkdAoF08zTF2m3V9lChoBmgJaA9DCCIzF7i8PG5AlIaUUpRoFU0RAWgWR0CgXVu4gA6udX2UKGgGaAloD0MIaXQHsbNdbECUhpRSlGgVTSABaBZHQKBd6/Vy3kR1fZQoaAZoCWgPQwhTPC6qxQdzQJSGlFKUaBVNbQFoFkdAoF4+3+dbxHV9lChoBmgJaA9DCLtFYKwvQHBAlIaUUpRoFU02AWgWR0CgXogrhBJJdX2UKGgGaAloD0MIA+/k0+O5b0CUhpRSlGgVTWkBaBZHQKBetel9Brx1fZQoaAZoCWgPQwjyJr9FJ+9uQJSGlFKUaBVNNwFoFkdAoF7yF49ovnV9lChoBmgJaA9DCI0qw7gbZAtAlIaUUpRoFUvTaBZHQKBfYxTsIE91fZQoaAZoCWgPQwgBUMWN2ylxQJSGlFKUaBVNFwFoFkdAoGAt03fhuXV9lChoBmgJaA9DCO4ljdE6g25AlIaUUpRoFU0tAWgWR0CgYSV0DEFXdX2UKGgGaAloD0MImPxP/m7kbkCUhpRSlGgVTTwBaBZHQKBhTpLVWjp1fZQoaAZoCWgPQwhfmbfquhlxQJSGlFKUaBVNFgFoFkdAoHAC7dznzXV9lChoBmgJaA9DCDkKEAWzq3FAlIaUUpRoFU0OAWgWR0CgcHP/zasZdX2UKGgGaAloD0MIvHX+7XIHcECUhpRSlGgVTSkBaBZHQKBwuy7f51x1fZQoaAZoCWgPQwgIHt/e9d1xQJSGlFKUaBVNFgFoFkdAoHDhcJMQE3V9lChoBmgJaA9DCPXyO03mCXFAlIaUUpRoFU1VAWgWR0CgcP5dnkDIdX2UKGgGaAloD0MISdqNPuaHP0CUhpRSlGgVS+doFkdAoHEvvjOs1nV9lChoBmgJaA9DCGrbMApCwXBAlIaUUpRoFU0kAWgWR0CgcZiUornUdX2UKGgGaAloD0MI+pgPCHR4cECUhpRSlGgVTVYBaBZHQKBx5Un5SFZ1fZQoaAZoCWgPQwjXv+szJxNzQJSGlFKUaBVNLQFoFkdAoHH8wUQCjnV9lChoBmgJaA9DCF0ZVBtcH3BAlIaUUpRoFU0kAWgWR0CgcivSlWOqdX2UKGgGaAloD0MIdY4B2WvFckCUhpRSlGgVTRsCaBZHQKByQ287IT51fZQoaAZoCWgPQwjc1avIqJ9xQJSGlFKUaBVNQQFoFkdAoHKrkZJkG3V9lChoBmgJaA9DCPIk6ZoJM3BAlIaUUpRoFU0tAWgWR0CgcrqUVzp5dX2UKGgGaAloD0MI9kVCWw6VcUCUhpRSlGgVTR0BaBZHQKBzDHR1HON1fZQoaAZoCWgPQwhF1hpK7Q1zQJSGlFKUaBVNJAFoFkdAoHP7di2Dx3V9lChoBmgJaA9DCAQAx569X3FAlIaUUpRoFU1OAWgWR0CgdD8OkLx7dX2UKGgGaAloD0MI+Z/83buRcUCUhpRSlGgVTSQBaBZHQKB0zIg/1QJ1fZQoaAZoCWgPQwiWJTrLLIlwQJSGlFKUaBVNPwFoFkdAoHTRFXq7iHV9lChoBmgJaA9DCL3kf/J3QnBAlIaUUpRoFU0fAWgWR0CgdQqneiztdX2UKGgGaAloD0MIa9JtiZx7cECUhpRSlGgVTT0BaBZHQKB1S4dZJTV1fZQoaAZoCWgPQwj7JHfYRKBsQJSGlFKUaBVNBQFoFkdAoHVmx+rlvXV9lChoBmgJaA9DCG8RGOsb1XJAlIaUUpRoFU1XAWgWR0CgdXGLLpzLdX2UKGgGaAloD0MIxmrz/yoVb0CUhpRSlGgVS/poFkdAoHWNsvZh8nV9lChoBmgJaA9DCNwNorXibHFAlIaUUpRoFU2xAWgWR0CgddSCWeH0dX2UKGgGaAloD0MIuTZUjPO0cECUhpRSlGgVTRABaBZHQKB18H6/IsB1fZQoaAZoCWgPQwgTDOcaZhVwQJSGlFKUaBVNSQFoFkdAoHYKvC/Gl3V9lChoBmgJaA9DCHoAi/z6EHNAlIaUUpRoFU09AWgWR0CgdjTLns9kdX2UKGgGaAloD0MInGuYoTHvcUCUhpRSlGgVTQwBaBZHQKB2TjIaLn91fZQoaAZoCWgPQwh7v9GOGwpxQJSGlFKUaBVNQwFoFkdAoHb3hMrVfHV9lChoBmgJaA9DCDmAft//WHFAlIaUUpRoFU0uAWgWR0CgdxChWYF8dX2UKGgGaAloD0MI9aCgFK24O0CUhpRSlGgVS9doFkdAoHd/D7655XV9lChoBmgJaA9DCDPBcK5hfnBAlIaUUpRoFU0iAWgWR0CgeAcq4H5adX2UKGgGaAloD0MIllzF4rcpckCUhpRSlGgVTTcBaBZHQKB4Flf7aZh1fZQoaAZoCWgPQwhzaJHt/HVvQJSGlFKUaBVNDgFoFkdAoHhAAsCkoHV9lChoBmgJaA9DCLcos0Emh09AlIaUUpRoFUvNaBZHQKB4dcNYr8R1fZQoaAZoCWgPQwh8RiI0AoFwQJSGlFKUaBVNDQFoFkdAoHiw22oegnV9lChoBmgJaA9DCOW36GTpFXFAlIaUUpRoFU0eAWgWR0CgeLOCwr1/dX2UKGgGaAloD0MIEOoihbI4QkCUhpRSlGgVS89oFkdAoHjJBomG/XV9lChoBmgJaA9DCFu21hcJkm1AlIaUUpRoFU0UAWgWR0CgeOOhsZYQdX2UKGgGaAloD0MILEZda+8ickCUhpRSlGgVTSQBaBZHQKB5ChbnoxJ1fZQoaAZoCWgPQwguc7osJtpvQJSGlFKUaBVNKAFoFkdAoHk0iD/VAnV9lChoBmgJaA9DCA9j0t/LNHBAlIaUUpRoFU0dAWgWR0CgeVAvDgqFdX2UKGgGaAloD0MI3JvfMJGecECUhpRSlGgVTTUBaBZHQKB5xTH80k51fZQoaAZoCWgPQwiWkuUk1LRwQJSGlFKUaBVNNAFoFkdAoHoJAIIF/3V9lChoBmgJaA9DCJq0qbpH3mxAlIaUUpRoFUv/aBZHQKB6NUn5SFZ1fZQoaAZoCWgPQwhQyM7b2DRKQJSGlFKUaBVL5WgWR0CgelWLHdXUdX2UKGgGaAloD0MIYTWWsDY5b0CUhpRSlGgVTTMBaBZHQKB6t94u9OB1fZQoaAZoCWgPQwgf963WiaVCQJSGlFKUaBVLqmgWR0CgetWFFlTWdX2UKGgGaAloD0MINGWnH9RZQ0CUhpRSlGgVS95oFkdAoHsK8an753V9lChoBmgJaA9DCOP9uP3yYXFAlIaUUpRoFU0PAWgWR0Cge1c76pHadX2UKGgGaAloD0MIpibBG9J2ckCUhpRSlGgVTRoBaBZHQKB7a2LpA2R1fZQoaAZoCWgPQwh3aFiM+stxQJSGlFKUaBVNHQFoFkdAoHugyylennV9lChoBmgJaA9DCK2nVl9dSXFAlIaUUpRoFU0sAWgWR0CgfEF3pwCKdX2UKGgGaAloD0MISfPHtLZTckCUhpRSlGgVTTABaBZHQKB8UuX/o7p1fZQoaAZoCWgPQwjGF+3xQuRxQJSGlFKUaBVNMwFoFkdAoHx3pW3jMnV9lChoBmgJaA9DCKGgFK1c53FAlIaUUpRoFU0mAWgWR0CgfJaE8JUpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e13c184580a06d638d03d06d7cb74849b5ff3c1aa6e0084974e5ed8e6b7f8949
|
3 |
+
size 147415
|
ppo-LunarLander-v2/data
CHANGED
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,24 +67,24 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
-
"n_steps":
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000.0,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678696028037959731,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI3hqr3hxIa648kcPdMAXDYA3Uk5QDNONQAAAAAAAAAAmqPLPOxVyrtRC5q7X9SRPMqsHb1lRHY9AACAPwAAgD8zHoy96jMCPjxWCD4tWJy+L0HZPCCbkTwAAAAAAAAAAJo3kL3/ONM+KvG9PWOuf768Zgc9ipfvvAAAAAAAAAAAJuutPn3ViT921ik+jRy6vrDWnj4Lw4K8AAAAAAAAAAAtWWI+7bgpP1/hh75EIHi+ALuePJW5n7sAAAAAAAAAAIDDCL1sC+a7tj6+O+aNmTxEfWG9DlOAPQAAgD8AAIA/gM0IvRSAjbqSt3s2LzaHMYta1jnK/pW1AACAPwAAgD/agvi9SGSeP6iQQb4Rbdy+1wkevgKmbL0AAAAAAAAAAM06Mr4D95Q/fUfBvlG56L6yI3u+lICrvQAAAAAAAAAAzcCKPBSsmroeeMc2fK2rMaP2wLrD/ei1AACAPwAAgD+at3M8rgmeusMJSrP/b+0upsWJOlpYyTMAAIA/AACAP01e3D0WOZU/SjAQPhCKt76uX9M9ZQr1vAAAAAAAAAAAmpsfPewtLj4NvhQ+tZ5Evs7LtT2N0nw8AAAAAAAAAAAAHkW9ElDvPubv7z3JPau+lnpHPGP5Az4AAAAAAAAAABpvCD16k3U+1sQxvFrbVr6NdcC8r81GPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVdRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIbByaNGJcECUhpRSlIwBbJRNNwGMAXSUR0CgVKazE74jdX2UKGgGaAloD0MIl3FTA82MckCUhpRSlGgVTSoBaBZHQKBU3Mtbs4V1fZQoaAZoCWgPQwgCLsiWJSFxQJSGlFKUaBVNWwFoFkdAoFTjnq3VkXV9lChoBmgJaA9DCJfJcDxfLXJAlIaUUpRoFU0nAWgWR0CgVSCRGMGYdX2UKGgGaAloD0MIXb9gN2xGcUCUhpRSlGgVTRwBaBZHQKBVLsuWa+h1fZQoaAZoCWgPQwhtADYgQgptQJSGlFKUaBVNDAFoFkdAoFWLeMyaeHV9lChoBmgJaA9DCJliDoLOUnBAlIaUUpRoFU0jAWgWR0CgVeiml67edX2UKGgGaAloD0MIs2DijyI6cECUhpRSlGgVTTEBaBZHQKBWYdBjWkJ1fZQoaAZoCWgPQwh5zas6K5pwQJSGlFKUaBVNPgFoFkdAoFZy9kBjnXV9lChoBmgJaA9DCN2YnrAEsHFAlIaUUpRoFU0PAWgWR0CgVxcox59mdX2UKGgGaAloD0MILSKKyZsHcECUhpRSlGgVTQgBaBZHQKBXIM98qnZ1fZQoaAZoCWgPQwiWkuUkFGttQJSGlFKUaBVNGAFoFkdAoFeLs+mm+HV9lChoBmgJaA9DCJCiztxDO3NAlIaUUpRoFU1JAWgWR0CgV6OloDgZdX2UKGgGaAloD0MIqgzjbhCQb0CUhpRSlGgVTQcBaBZHQKBX85Qxesx1fZQoaAZoCWgPQwixpx3+2rJyQJSGlFKUaBVNNgFoFkdAoFgICW/rSnV9lChoBmgJaA9DCLsM/+mGOXBAlIaUUpRoFU0nAWgWR0CgWEo/RmbtdX2UKGgGaAloD0MI4q/JGnUVcUCUhpRSlGgVTTsBaBZHQKBYpysjmjl1fZQoaAZoCWgPQwiP/SyW4qNyQJSGlFKUaBVNIgFoFkdAoFjoqkM1CXV9lChoBmgJaA9DCOvhy0RRe3FAlIaUUpRoFU0nAWgWR0CgWQ+UhV2idX2UKGgGaAloD0MIlwD8U6oDc0CUhpRSlGgVTVEBaBZHQKBZQogFHJ91fZQoaAZoCWgPQwiJmX0eY4NwQJSGlFKUaBVNUAFoFkdAoFlGrn1WbXV9lChoBmgJaA9DCK/uWGyTpkVAlIaUUpRoFUvcaBZHQKBZckleF+N1fZQoaAZoCWgPQwiBW3fzVJxwQJSGlFKUaBVNLwFoFkdAoFmNvuPV/nV9lChoBmgJaA9DCLCtn/5znHBAlIaUUpRoFU0nAWgWR0CgWctzS1E3dX2UKGgGaAloD0MIccYwJ2iXb0CUhpRSlGgVTTsBaBZHQKBaeyRjjJd1fZQoaAZoCWgPQwhLWBtj531zQJSGlFKUaBVNLgFoFkdAoFsaNS619nV9lChoBmgJaA9DCIbI6es5qnFAlIaUUpRoFU06AWgWR0CgWz5/kNnXdX2UKGgGaAloD0MI6fLmcC1QcUCUhpRSlGgVS/9oFkdAoFtbPGACn3V9lChoBmgJaA9DCFzJjo3ArnNAlIaUUpRoFU0gAWgWR0CgW2z1kDp1dX2UKGgGaAloD0MIW2H6XkMGckCUhpRSlGgVTU0BaBZHQKBcHgWrOqx1fZQoaAZoCWgPQwjZB1kWzHJxQJSGlFKUaBVNNQFoFkdAoFwy9AX2unV9lChoBmgJaA9DCEhRZ+6hYXBAlIaUUpRoFU00AWgWR0CgXLDE3sHCdX2UKGgGaAloD0MIBK4rZkQkcUCUhpRSlGgVTRMBaBZHQKBc3z+3pfR1fZQoaAZoCWgPQwh6whIPqBRzQJSGlFKUaBVNDAFoFkdAoF08zTF2m3V9lChoBmgJaA9DCCIzF7i8PG5AlIaUUpRoFU0RAWgWR0CgXVu4gA6udX2UKGgGaAloD0MIaXQHsbNdbECUhpRSlGgVTSABaBZHQKBd6/Vy3kR1fZQoaAZoCWgPQwhTPC6qxQdzQJSGlFKUaBVNbQFoFkdAoF4+3+dbxHV9lChoBmgJaA9DCLtFYKwvQHBAlIaUUpRoFU02AWgWR0CgXogrhBJJdX2UKGgGaAloD0MIA+/k0+O5b0CUhpRSlGgVTWkBaBZHQKBetel9Brx1fZQoaAZoCWgPQwjyJr9FJ+9uQJSGlFKUaBVNNwFoFkdAoF7yF49ovnV9lChoBmgJaA9DCI0qw7gbZAtAlIaUUpRoFUvTaBZHQKBfYxTsIE91fZQoaAZoCWgPQwgBUMWN2ylxQJSGlFKUaBVNFwFoFkdAoGAt03fhuXV9lChoBmgJaA9DCO4ljdE6g25AlIaUUpRoFU0tAWgWR0CgYSV0DEFXdX2UKGgGaAloD0MImPxP/m7kbkCUhpRSlGgVTTwBaBZHQKBhTpLVWjp1fZQoaAZoCWgPQwhfmbfquhlxQJSGlFKUaBVNFgFoFkdAoHAC7dznzXV9lChoBmgJaA9DCDkKEAWzq3FAlIaUUpRoFU0OAWgWR0CgcHP/zasZdX2UKGgGaAloD0MIvHX+7XIHcECUhpRSlGgVTSkBaBZHQKBwuy7f51x1fZQoaAZoCWgPQwgIHt/e9d1xQJSGlFKUaBVNFgFoFkdAoHDhcJMQE3V9lChoBmgJaA9DCPXyO03mCXFAlIaUUpRoFU1VAWgWR0CgcP5dnkDIdX2UKGgGaAloD0MISdqNPuaHP0CUhpRSlGgVS+doFkdAoHEvvjOs1nV9lChoBmgJaA9DCGrbMApCwXBAlIaUUpRoFU0kAWgWR0CgcZiUornUdX2UKGgGaAloD0MI+pgPCHR4cECUhpRSlGgVTVYBaBZHQKBx5Un5SFZ1fZQoaAZoCWgPQwjXv+szJxNzQJSGlFKUaBVNLQFoFkdAoHH8wUQCjnV9lChoBmgJaA9DCF0ZVBtcH3BAlIaUUpRoFU0kAWgWR0CgcivSlWOqdX2UKGgGaAloD0MIdY4B2WvFckCUhpRSlGgVTRsCaBZHQKByQ287IT51fZQoaAZoCWgPQwjc1avIqJ9xQJSGlFKUaBVNQQFoFkdAoHKrkZJkG3V9lChoBmgJaA9DCPIk6ZoJM3BAlIaUUpRoFU0tAWgWR0CgcrqUVzp5dX2UKGgGaAloD0MI9kVCWw6VcUCUhpRSlGgVTR0BaBZHQKBzDHR1HON1fZQoaAZoCWgPQwhF1hpK7Q1zQJSGlFKUaBVNJAFoFkdAoHP7di2Dx3V9lChoBmgJaA9DCAQAx569X3FAlIaUUpRoFU1OAWgWR0CgdD8OkLx7dX2UKGgGaAloD0MI+Z/83buRcUCUhpRSlGgVTSQBaBZHQKB0zIg/1QJ1fZQoaAZoCWgPQwiWJTrLLIlwQJSGlFKUaBVNPwFoFkdAoHTRFXq7iHV9lChoBmgJaA9DCL3kf/J3QnBAlIaUUpRoFU0fAWgWR0CgdQqneiztdX2UKGgGaAloD0MIa9JtiZx7cECUhpRSlGgVTT0BaBZHQKB1S4dZJTV1fZQoaAZoCWgPQwj7JHfYRKBsQJSGlFKUaBVNBQFoFkdAoHVmx+rlvXV9lChoBmgJaA9DCG8RGOsb1XJAlIaUUpRoFU1XAWgWR0CgdXGLLpzLdX2UKGgGaAloD0MIxmrz/yoVb0CUhpRSlGgVS/poFkdAoHWNsvZh8nV9lChoBmgJaA9DCNwNorXibHFAlIaUUpRoFU2xAWgWR0CgddSCWeH0dX2UKGgGaAloD0MIuTZUjPO0cECUhpRSlGgVTRABaBZHQKB18H6/IsB1fZQoaAZoCWgPQwgTDOcaZhVwQJSGlFKUaBVNSQFoFkdAoHYKvC/Gl3V9lChoBmgJaA9DCHoAi/z6EHNAlIaUUpRoFU09AWgWR0CgdjTLns9kdX2UKGgGaAloD0MInGuYoTHvcUCUhpRSlGgVTQwBaBZHQKB2TjIaLn91fZQoaAZoCWgPQwh7v9GOGwpxQJSGlFKUaBVNQwFoFkdAoHb3hMrVfHV9lChoBmgJaA9DCDmAft//WHFAlIaUUpRoFU0uAWgWR0CgdxChWYF8dX2UKGgGaAloD0MI9aCgFK24O0CUhpRSlGgVS9doFkdAoHd/D7655XV9lChoBmgJaA9DCDPBcK5hfnBAlIaUUpRoFU0iAWgWR0CgeAcq4H5adX2UKGgGaAloD0MIllzF4rcpckCUhpRSlGgVTTcBaBZHQKB4Flf7aZh1fZQoaAZoCWgPQwhzaJHt/HVvQJSGlFKUaBVNDgFoFkdAoHhAAsCkoHV9lChoBmgJaA9DCLcos0Emh09AlIaUUpRoFUvNaBZHQKB4dcNYr8R1fZQoaAZoCWgPQwh8RiI0AoFwQJSGlFKUaBVNDQFoFkdAoHiw22oegnV9lChoBmgJaA9DCOW36GTpFXFAlIaUUpRoFU0eAWgWR0CgeLOCwr1/dX2UKGgGaAloD0MIEOoihbI4QkCUhpRSlGgVS89oFkdAoHjJBomG/XV9lChoBmgJaA9DCFu21hcJkm1AlIaUUpRoFU0UAWgWR0CgeOOhsZYQdX2UKGgGaAloD0MILEZda+8ickCUhpRSlGgVTSQBaBZHQKB5ChbnoxJ1fZQoaAZoCWgPQwguc7osJtpvQJSGlFKUaBVNKAFoFkdAoHk0iD/VAnV9lChoBmgJaA9DCA9j0t/LNHBAlIaUUpRoFU0dAWgWR0CgeVAvDgqFdX2UKGgGaAloD0MI3JvfMJGecECUhpRSlGgVTTUBaBZHQKB5xTH80k51fZQoaAZoCWgPQwiWkuUk1LRwQJSGlFKUaBVNNAFoFkdAoHoJAIIF/3V9lChoBmgJaA9DCJq0qbpH3mxAlIaUUpRoFUv/aBZHQKB6NUn5SFZ1fZQoaAZoCWgPQwhQyM7b2DRKQJSGlFKUaBVL5WgWR0CgelWLHdXUdX2UKGgGaAloD0MIYTWWsDY5b0CUhpRSlGgVTTMBaBZHQKB6t94u9OB1fZQoaAZoCWgPQwgf963WiaVCQJSGlFKUaBVLqmgWR0CgetWFFlTWdX2UKGgGaAloD0MINGWnH9RZQ0CUhpRSlGgVS95oFkdAoHsK8an753V9lChoBmgJaA9DCOP9uP3yYXFAlIaUUpRoFU0PAWgWR0Cge1c76pHadX2UKGgGaAloD0MIpibBG9J2ckCUhpRSlGgVTRoBaBZHQKB7a2LpA2R1fZQoaAZoCWgPQwh3aFiM+stxQJSGlFKUaBVNHQFoFkdAoHugyylennV9lChoBmgJaA9DCK2nVl9dSXFAlIaUUpRoFU0sAWgWR0CgfEF3pwCKdX2UKGgGaAloD0MISfPHtLZTckCUhpRSlGgVTTABaBZHQKB8UuX/o7p1fZQoaAZoCWgPQwjGF+3xQuRxQJSGlFKUaBVNMwFoFkdAoHx3pW3jMnV9lChoBmgJaA9DCKGgFK1c53FAlIaUUpRoFU0mAWgWR0CgfJaE8JUpdWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b9149a7c60f9e60df9f2252a2a621e61a89848fee63125b7d60ef426d8e2685
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2a338e94c2c108cb7b0fda3ddea4463ef153550f9d663f92db80b20fa5583b7
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 253.80405083641955, "std_reward": 25.585114749265, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-13T08:48:22.901664"}
|