odiaz1066 commited on
Commit
51ba04f
·
1 Parent(s): 1490dea

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.93 +/- 0.82
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fa55bb43c148d9417bbb24c4f20fde6cc81d795db2057ac8e2071f3820c4685
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9a4eb07700>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f9a4eb05420>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675367695750332235,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlgj3PjX+zzyf6g0/lgj3PjX+zzyf6g0/lgj3PjX+zzyf6g0/lgj3PjX+zzyf6g0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAL/Yv+GKuz+CMbO/nYVjPvDlgj9dF9E/8jWVPxX7770rvrc/4gXwPpCBcr/dh9O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACWCPc+Nf7PPJ/qDT9TYVw8vCO4ur6SzLuWCPc+Nf7PPJ/qDT9TYVw8vCO4ur6SzLuWCPc+Nf7PPJ/qDT9TYVw8vCO4ur6SzLuWCPc+Nf7PPJ/qDT9TYVw8vCO4ur6SzLuUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.48248738 0.02538977 0.5543613 ]\n [0.48248738 0.02538977 0.5543613 ]\n [0.48248738 0.02538977 0.5543613 ]\n [0.48248738 0.02538977 0.5543613 ]]",
60
+ "desired_goal": "[[-1.6933289 1.4651757 -1.3999484 ]\n [ 0.22218938 1.0226421 1.6335255 ]\n [ 1.1657088 -0.11717812 1.435491 ]\n [ 0.46879488 -0.94728947 -1.6525837 ]]",
61
+ "observation": "[[ 0.48248738 0.02538977 0.5543613 0.01345094 -0.00140487 -0.00624308]\n [ 0.48248738 0.02538977 0.5543613 0.01345094 -0.00140487 -0.00624308]\n [ 0.48248738 0.02538977 0.5543613 0.01345094 -0.00140487 -0.00624308]\n [ 0.48248738 0.02538977 0.5543613 0.01345094 -0.00140487 -0.00624308]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyvCsPaDl+TtMU4U+brxzvf/wlz0lqUs+q1SfPZtD7D3KdC4+mgJbve7t2r1lRYM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.08444364 0.00762625 0.26040113]\n [-0.05950587 0.07419013 0.19888742]\n [ 0.07779821 0.11536332 0.17036739]\n [-0.05346928 -0.10689913 0.2563888 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrG9gcqO4EcCUhpRSlIwBbJRLMowBdJRHQKamgXkYGdJ1fZQoaAZoCWgPQwj0TgXc83z8v5SGlFKUaBVLMmgWR0Cmpkmbb1yvdX2UKGgGaAloD0MIUKkSZW9p+r+UhpRSlGgVSzJoFkdApqYQsqaw2XV9lChoBmgJaA9DCNs2jILgMRLAlIaUUpRoFUsyaBZHQKal1kiliz91fZQoaAZoCWgPQwjUmXtI+B78v5SGlFKUaBVLMmgWR0CmqDhr30wrdX2UKGgGaAloD0MIDVLwFHI1FsCUhpRSlGgVSzJoFkdApqgAzk6tDHV9lChoBmgJaA9DCNRDNLqD2ALAlIaUUpRoFUsyaBZHQKanx81Gb1B1fZQoaAZoCWgPQwhxxjAnaPMDwJSGlFKUaBVLMmgWR0Cmp42pZOi4dX2UKGgGaAloD0MISMMpc/OtC8CUhpRSlGgVSzJoFkdApqnoG0NSZXV9lChoBmgJaA9DCDs1lxsMtRPAlIaUUpRoFUsyaBZHQKapsAEMb3p1fZQoaAZoCWgPQwjZP08DBgkDwJSGlFKUaBVLMmgWR0CmqXcfNiYtdX2UKGgGaAloD0MIOnr83qY/A8CUhpRSlGgVSzJoFkdApqk8kGA09HV9lChoBmgJaA9DCK1p3nGKDvi/lIaUUpRoFUsyaBZHQKarlyDIzWR1fZQoaAZoCWgPQwikqZ7MPzoDwJSGlFKUaBVLMmgWR0Cmq19/jKgadX2UKGgGaAloD0MIK4nsgyxLDMCUhpRSlGgVSzJoFkdApqsmqioKlnV9lChoBmgJaA9DCNYCe0yk9P2/lIaUUpRoFUsyaBZHQKaq7JxNqQB1fZQoaAZoCWgPQwh8QnbexgYQwJSGlFKUaBVLMmgWR0CmrTe6I3zddX2UKGgGaAloD0MI6s2o+Sq5DcCUhpRSlGgVSzJoFkdApqz/u7YkFHV9lChoBmgJaA9DCLGiBtMwvBfAlIaUUpRoFUsyaBZHQKasxtBv73x1fZQoaAZoCWgPQwgmNh/XhmoAwJSGlFKUaBVLMmgWR0CmrIx8UmD2dX2UKGgGaAloD0MIdGGkF7U7CsCUhpRSlGgVSzJoFkdApq7cVtXPq3V9lChoBmgJaA9DCGYTYFj+3BDAlIaUUpRoFUsyaBZHQKaupA+IM0B1fZQoaAZoCWgPQwhWurvOhjwMwJSGlFKUaBVLMmgWR0Cmrms/hVENdX2UKGgGaAloD0MIg02dR8UfEsCUhpRSlGgVSzJoFkdApq4xKL8763V9lChoBmgJaA9DCMTSwI9q2A7AlIaUUpRoFUsyaBZHQKav2pz90ih1fZQoaAZoCWgPQwiBlxk2yvoCwJSGlFKUaBVLMmgWR0Cmr6ImXw9adX2UKGgGaAloD0MIcRsN4C0wCcCUhpRSlGgVSzJoFkdApq9oE6kqMHV9lChoBmgJaA9DCAUVVb/SiRDAlIaUUpRoFUsyaBZHQKavLOclPad1fZQoaAZoCWgPQwhkrgyqDc4FwJSGlFKUaBVLMmgWR0CmsNkY4yXVdX2UKGgGaAloD0MIeuQPBp4bBsCUhpRSlGgVSzJoFkdAprCgxzq8lHV9lChoBmgJaA9DCMwolltajfi/lIaUUpRoFUsyaBZHQKawZxRVIZt1fZQoaAZoCWgPQwj7BFCMLDkCwJSGlFKUaBVLMmgWR0CmsCxEORT1dX2UKGgGaAloD0MIsd09QPflCcCUhpRSlGgVSzJoFkdAprHYcrAgxXV9lChoBmgJaA9DCJp9HqM8s/W/lIaUUpRoFUsyaBZHQKaxoA80UGp1fZQoaAZoCWgPQwjQmbSpuqcAwJSGlFKUaBVLMmgWR0CmsWYxDb8FdX2UKGgGaAloD0MI/dzQlJ1+CcCUhpRSlGgVSzJoFkdAprErAgxJunV9lChoBmgJaA9DCDyiQnVzkQvAlIaUUpRoFUsyaBZHQKay5iiItUZ1fZQoaAZoCWgPQwikxoSYS6r5v5SGlFKUaBVLMmgWR0Cmsq2d/axpdX2UKGgGaAloD0MIBMb6Bib3DcCUhpRSlGgVSzJoFkdAprJz4QBgeHV9lChoBmgJaA9DCB1xyAbSRQHAlIaUUpRoFUsyaBZHQKayONCJGfB1fZQoaAZoCWgPQwhCl3DoLX4DwJSGlFKUaBVLMmgWR0Cms98gZCOWdX2UKGgGaAloD0MIzEHQ0aqWD8CUhpRSlGgVSzJoFkdAprOmmLtNSXV9lChoBmgJaA9DCKcFL/oK8gPAlIaUUpRoFUsyaBZHQKazbJT2nKp1fZQoaAZoCWgPQwiHGK95VScQwJSGlFKUaBVLMmgWR0CmszFjEvTPdX2UKGgGaAloD0MI6PnTRnV6BsCUhpRSlGgVSzJoFkdAprTbv/io9HV9lChoBmgJaA9DCM/26A33kQjAlIaUUpRoFUsyaBZHQKa0ouM+/xl1fZQoaAZoCWgPQwhauReYFWoLwJSGlFKUaBVLMmgWR0CmtGjWkJrtdX2UKGgGaAloD0MI6PS8GwsqAcCUhpRSlGgVSzJoFkdAprQtpj+aSnV9lChoBmgJaA9DCFHAdjBi3wjAlIaUUpRoFUsyaBZHQKa16A1ejVR1fZQoaAZoCWgPQwj+uWjIeLQGwJSGlFKUaBVLMmgWR0Cmta+TFERbdX2UKGgGaAloD0MI2JyDZ0IzBcCUhpRSlGgVSzJoFkdAprV1rIo3JnV9lChoBmgJaA9DCN7M6EfDKQTAlIaUUpRoFUsyaBZHQKa1Oogmqo91fZQoaAZoCWgPQwjkgjP4+6UQwJSGlFKUaBVLMmgWR0CmtvSnUDuCdX2UKGgGaAloD0MI2jwOg/mr+7+UhpRSlGgVSzJoFkdApra8CaJAMXV9lChoBmgJaA9DCD4EVaNXA/m/lIaUUpRoFUsyaBZHQKa2gmFajet1fZQoaAZoCWgPQwi62LRSCAQPwJSGlFKUaBVLMmgWR0CmtkdwWFewdX2UKGgGaAloD0MIbqMBvAUSCMCUhpRSlGgVSzJoFkdAprgCQxN7B3V9lChoBmgJaA9DCCrKpfELLwjAlIaUUpRoFUsyaBZHQKa3ybMHKOl1fZQoaAZoCWgPQwi7ZBwj2SP3v5SGlFKUaBVLMmgWR0Cmt4/zJ6ppdX2UKGgGaAloD0MI6BIOvcXD+r+UhpRSlGgVSzJoFkdAprdUz2vjfnV9lChoBmgJaA9DCJ8cBYiC2fi/lIaUUpRoFUsyaBZHQKa5EvUSZjR1fZQoaAZoCWgPQwhW16GakmwMwJSGlFKUaBVLMmgWR0CmuNpBw++udX2UKGgGaAloD0MItWytLxK6C8CUhpRSlGgVSzJoFkdAprigk3S8anV9lChoBmgJaA9DCJD0aRX9YQjAlIaUUpRoFUsyaBZHQKa4ZXiBGx51fZQoaAZoCWgPQwhm9nmM8sz+v5SGlFKUaBVLMmgWR0CmuhmMn7YTdX2UKGgGaAloD0MIJJhqZi2FBcCUhpRSlGgVSzJoFkdAprng4yXUpnV9lChoBmgJaA9DCLGLogc+Rv2/lIaUUpRoFUsyaBZHQKa5pyIYWLx1fZQoaAZoCWgPQwjwUuqScUz5v5SGlFKUaBVLMmgWR0CmuWwMH8jzdX2UKGgGaAloD0MIv5oDBHM0AMCUhpRSlGgVSzJoFkdAprs2YMOPNnV9lChoBmgJaA9DCGyVYHE4cwXAlIaUUpRoFUsyaBZHQKa6/aC+UQl1fZQoaAZoCWgPQwh7hJohVVT0v5SGlFKUaBVLMmgWR0CmusPVd5Y6dX2UKGgGaAloD0MI7Z3RViWR+b+UhpRSlGgVSzJoFkdAprqIrWiDd3V9lChoBmgJaA9DCKcGms+5ewrAlIaUUpRoFUsyaBZHQKa8Qj2zv7Z1fZQoaAZoCWgPQwgxzt+EQgT0v5SGlFKUaBVLMmgWR0CmvAmPYFq0dX2UKGgGaAloD0MILSP1nsrp97+UhpRSlGgVSzJoFkdAprvP3pOernV9lChoBmgJaA9DCIyfxr35zQrAlIaUUpRoFUsyaBZHQKa7lMWXTmZ1fZQoaAZoCWgPQwjso1NXPkv/v5SGlFKUaBVLMmgWR0CmvU8Gs3hodX2UKGgGaAloD0MIGCe+2lFcBcCUhpRSlGgVSzJoFkdApr0WkFfReHV9lChoBmgJaA9DCMTpJFtdfhDAlIaUUpRoFUsyaBZHQKa83MeOn2t1fZQoaAZoCWgPQwj52ch1U+oHwJSGlFKUaBVLMmgWR0CmvKGRFI/adX2UKGgGaAloD0MIFK5H4XpUBMCUhpRSlGgVSzJoFkdApr5XnhbW3HV9lChoBmgJaA9DCGovou2YuvW/lIaUUpRoFUsyaBZHQKa+Hxqfvnd1fZQoaAZoCWgPQwgAAWvVrokJwJSGlFKUaBVLMmgWR0CmveVT72tddX2UKGgGaAloD0MIiujX1k9/D8CUhpRSlGgVSzJoFkdApr2qJbdJrnV9lChoBmgJaA9DCO2ZJQFqqgjAlIaUUpRoFUsyaBZHQKa/WJIlMRJ1fZQoaAZoCWgPQwisNv+vOlIPwJSGlFKUaBVLMmgWR0Cmvx//NqxkdX2UKGgGaAloD0MIAi7IluVLCsCUhpRSlGgVSzJoFkdApr7mPaL4vnV9lChoBmgJaA9DCE890uC2Vg3AlIaUUpRoFUsyaBZHQKa+qxVyWAx1fZQoaAZoCWgPQwgGSZ9W0d//v5SGlFKUaBVLMmgWR0CmwHFANXo1dX2UKGgGaAloD0MIc9U8R+S7A8CUhpRSlGgVSzJoFkdApsA4nx8UmHV9lChoBmgJaA9DCL4uw3+6AQTAlIaUUpRoFUsyaBZHQKa//vjOs1d1fZQoaAZoCWgPQwiOWItPAfAJwJSGlFKUaBVLMmgWR0Cmv8PdM0xedX2UKGgGaAloD0MIdCZtqu7R87+UhpRSlGgVSzJoFkdApsF4WHk92XV9lChoBmgJaA9DCFvs9lllRgLAlIaUUpRoFUsyaBZHQKbBP8OTaCd1fZQoaAZoCWgPQwiM9nghHZ78v5SGlFKUaBVLMmgWR0CmwQYuK4x2dX2UKGgGaAloD0MInff/ccKE/b+UhpRSlGgVSzJoFkdApsDLEBKcu3V9lChoBmgJaA9DCGTOM/YlWwHAlIaUUpRoFUsyaBZHQKbCfZQHiWF1fZQoaAZoCWgPQwiEYitoWkIMwJSGlFKUaBVLMmgWR0CmwkT4DcM3dX2UKGgGaAloD0MIYYkHlE25AMCUhpRSlGgVSzJoFkdApsILApKBd3V9lChoBmgJaA9DCIPAyqFFNvW/lIaUUpRoFUsyaBZHQKbBz9jPOY91ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf210b74fd24ef47fe418880fb3692651e9784bc0312cb9b665e94c0c868f394
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7cdb5e7c9ce605021c82e114316aa93b625b5584c5521e54533908b521efeb05
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9a4eb07700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a4eb05420>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675367695750332235, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlgj3PjX+zzyf6g0/lgj3PjX+zzyf6g0/lgj3PjX+zzyf6g0/lgj3PjX+zzyf6g0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAL/Yv+GKuz+CMbO/nYVjPvDlgj9dF9E/8jWVPxX7770rvrc/4gXwPpCBcr/dh9O/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACWCPc+Nf7PPJ/qDT9TYVw8vCO4ur6SzLuWCPc+Nf7PPJ/qDT9TYVw8vCO4ur6SzLuWCPc+Nf7PPJ/qDT9TYVw8vCO4ur6SzLuWCPc+Nf7PPJ/qDT9TYVw8vCO4ur6SzLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.48248738 0.02538977 0.5543613 ]\n [0.48248738 0.02538977 0.5543613 ]\n [0.48248738 0.02538977 0.5543613 ]\n [0.48248738 0.02538977 0.5543613 ]]", "desired_goal": "[[-1.6933289 1.4651757 -1.3999484 ]\n [ 0.22218938 1.0226421 1.6335255 ]\n [ 1.1657088 -0.11717812 1.435491 ]\n [ 0.46879488 -0.94728947 -1.6525837 ]]", "observation": "[[ 0.48248738 0.02538977 0.5543613 0.01345094 -0.00140487 -0.00624308]\n [ 0.48248738 0.02538977 0.5543613 0.01345094 -0.00140487 -0.00624308]\n [ 0.48248738 0.02538977 0.5543613 0.01345094 -0.00140487 -0.00624308]\n [ 0.48248738 0.02538977 0.5543613 0.01345094 -0.00140487 -0.00624308]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyvCsPaDl+TtMU4U+brxzvf/wlz0lqUs+q1SfPZtD7D3KdC4+mgJbve7t2r1lRYM+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08444364 0.00762625 0.26040113]\n [-0.05950587 0.07419013 0.19888742]\n [ 0.07779821 0.11536332 0.17036739]\n [-0.05346928 -0.10689913 0.2563888 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrG9gcqO4EcCUhpRSlIwBbJRLMowBdJRHQKamgXkYGdJ1fZQoaAZoCWgPQwj0TgXc83z8v5SGlFKUaBVLMmgWR0Cmpkmbb1yvdX2UKGgGaAloD0MIUKkSZW9p+r+UhpRSlGgVSzJoFkdApqYQsqaw2XV9lChoBmgJaA9DCNs2jILgMRLAlIaUUpRoFUsyaBZHQKal1kiliz91fZQoaAZoCWgPQwjUmXtI+B78v5SGlFKUaBVLMmgWR0CmqDhr30wrdX2UKGgGaAloD0MIDVLwFHI1FsCUhpRSlGgVSzJoFkdApqgAzk6tDHV9lChoBmgJaA9DCNRDNLqD2ALAlIaUUpRoFUsyaBZHQKanx81Gb1B1fZQoaAZoCWgPQwhxxjAnaPMDwJSGlFKUaBVLMmgWR0Cmp42pZOi4dX2UKGgGaAloD0MISMMpc/OtC8CUhpRSlGgVSzJoFkdApqnoG0NSZXV9lChoBmgJaA9DCDs1lxsMtRPAlIaUUpRoFUsyaBZHQKapsAEMb3p1fZQoaAZoCWgPQwjZP08DBgkDwJSGlFKUaBVLMmgWR0CmqXcfNiYtdX2UKGgGaAloD0MIOnr83qY/A8CUhpRSlGgVSzJoFkdApqk8kGA09HV9lChoBmgJaA9DCK1p3nGKDvi/lIaUUpRoFUsyaBZHQKarlyDIzWR1fZQoaAZoCWgPQwikqZ7MPzoDwJSGlFKUaBVLMmgWR0Cmq19/jKgadX2UKGgGaAloD0MIK4nsgyxLDMCUhpRSlGgVSzJoFkdApqsmqioKlnV9lChoBmgJaA9DCNYCe0yk9P2/lIaUUpRoFUsyaBZHQKaq7JxNqQB1fZQoaAZoCWgPQwh8QnbexgYQwJSGlFKUaBVLMmgWR0CmrTe6I3zddX2UKGgGaAloD0MI6s2o+Sq5DcCUhpRSlGgVSzJoFkdApqz/u7YkFHV9lChoBmgJaA9DCLGiBtMwvBfAlIaUUpRoFUsyaBZHQKasxtBv73x1fZQoaAZoCWgPQwgmNh/XhmoAwJSGlFKUaBVLMmgWR0CmrIx8UmD2dX2UKGgGaAloD0MIdGGkF7U7CsCUhpRSlGgVSzJoFkdApq7cVtXPq3V9lChoBmgJaA9DCGYTYFj+3BDAlIaUUpRoFUsyaBZHQKaupA+IM0B1fZQoaAZoCWgPQwhWurvOhjwMwJSGlFKUaBVLMmgWR0Cmrms/hVENdX2UKGgGaAloD0MIg02dR8UfEsCUhpRSlGgVSzJoFkdApq4xKL8763V9lChoBmgJaA9DCMTSwI9q2A7AlIaUUpRoFUsyaBZHQKav2pz90ih1fZQoaAZoCWgPQwiBlxk2yvoCwJSGlFKUaBVLMmgWR0Cmr6ImXw9adX2UKGgGaAloD0MIcRsN4C0wCcCUhpRSlGgVSzJoFkdApq9oE6kqMHV9lChoBmgJaA9DCAUVVb/SiRDAlIaUUpRoFUsyaBZHQKavLOclPad1fZQoaAZoCWgPQwhkrgyqDc4FwJSGlFKUaBVLMmgWR0CmsNkY4yXVdX2UKGgGaAloD0MIeuQPBp4bBsCUhpRSlGgVSzJoFkdAprCgxzq8lHV9lChoBmgJaA9DCMwolltajfi/lIaUUpRoFUsyaBZHQKawZxRVIZt1fZQoaAZoCWgPQwj7BFCMLDkCwJSGlFKUaBVLMmgWR0CmsCxEORT1dX2UKGgGaAloD0MIsd09QPflCcCUhpRSlGgVSzJoFkdAprHYcrAgxXV9lChoBmgJaA9DCJp9HqM8s/W/lIaUUpRoFUsyaBZHQKaxoA80UGp1fZQoaAZoCWgPQwjQmbSpuqcAwJSGlFKUaBVLMmgWR0CmsWYxDb8FdX2UKGgGaAloD0MI/dzQlJ1+CcCUhpRSlGgVSzJoFkdAprErAgxJunV9lChoBmgJaA9DCDyiQnVzkQvAlIaUUpRoFUsyaBZHQKay5iiItUZ1fZQoaAZoCWgPQwikxoSYS6r5v5SGlFKUaBVLMmgWR0Cmsq2d/axpdX2UKGgGaAloD0MIBMb6Bib3DcCUhpRSlGgVSzJoFkdAprJz4QBgeHV9lChoBmgJaA9DCB1xyAbSRQHAlIaUUpRoFUsyaBZHQKayONCJGfB1fZQoaAZoCWgPQwhCl3DoLX4DwJSGlFKUaBVLMmgWR0Cms98gZCOWdX2UKGgGaAloD0MIzEHQ0aqWD8CUhpRSlGgVSzJoFkdAprOmmLtNSXV9lChoBmgJaA9DCKcFL/oK8gPAlIaUUpRoFUsyaBZHQKazbJT2nKp1fZQoaAZoCWgPQwiHGK95VScQwJSGlFKUaBVLMmgWR0CmszFjEvTPdX2UKGgGaAloD0MI6PnTRnV6BsCUhpRSlGgVSzJoFkdAprTbv/io9HV9lChoBmgJaA9DCM/26A33kQjAlIaUUpRoFUsyaBZHQKa0ouM+/xl1fZQoaAZoCWgPQwhauReYFWoLwJSGlFKUaBVLMmgWR0CmtGjWkJrtdX2UKGgGaAloD0MI6PS8GwsqAcCUhpRSlGgVSzJoFkdAprQtpj+aSnV9lChoBmgJaA9DCFHAdjBi3wjAlIaUUpRoFUsyaBZHQKa16A1ejVR1fZQoaAZoCWgPQwj+uWjIeLQGwJSGlFKUaBVLMmgWR0Cmta+TFERbdX2UKGgGaAloD0MI2JyDZ0IzBcCUhpRSlGgVSzJoFkdAprV1rIo3JnV9lChoBmgJaA9DCN7M6EfDKQTAlIaUUpRoFUsyaBZHQKa1Oogmqo91fZQoaAZoCWgPQwjkgjP4+6UQwJSGlFKUaBVLMmgWR0CmtvSnUDuCdX2UKGgGaAloD0MI2jwOg/mr+7+UhpRSlGgVSzJoFkdApra8CaJAMXV9lChoBmgJaA9DCD4EVaNXA/m/lIaUUpRoFUsyaBZHQKa2gmFajet1fZQoaAZoCWgPQwi62LRSCAQPwJSGlFKUaBVLMmgWR0CmtkdwWFewdX2UKGgGaAloD0MIbqMBvAUSCMCUhpRSlGgVSzJoFkdAprgCQxN7B3V9lChoBmgJaA9DCCrKpfELLwjAlIaUUpRoFUsyaBZHQKa3ybMHKOl1fZQoaAZoCWgPQwi7ZBwj2SP3v5SGlFKUaBVLMmgWR0Cmt4/zJ6ppdX2UKGgGaAloD0MI6BIOvcXD+r+UhpRSlGgVSzJoFkdAprdUz2vjfnV9lChoBmgJaA9DCJ8cBYiC2fi/lIaUUpRoFUsyaBZHQKa5EvUSZjR1fZQoaAZoCWgPQwhW16GakmwMwJSGlFKUaBVLMmgWR0CmuNpBw++udX2UKGgGaAloD0MItWytLxK6C8CUhpRSlGgVSzJoFkdAprigk3S8anV9lChoBmgJaA9DCJD0aRX9YQjAlIaUUpRoFUsyaBZHQKa4ZXiBGx51fZQoaAZoCWgPQwhm9nmM8sz+v5SGlFKUaBVLMmgWR0CmuhmMn7YTdX2UKGgGaAloD0MIJJhqZi2FBcCUhpRSlGgVSzJoFkdAprng4yXUpnV9lChoBmgJaA9DCLGLogc+Rv2/lIaUUpRoFUsyaBZHQKa5pyIYWLx1fZQoaAZoCWgPQwjwUuqScUz5v5SGlFKUaBVLMmgWR0CmuWwMH8jzdX2UKGgGaAloD0MIv5oDBHM0AMCUhpRSlGgVSzJoFkdAprs2YMOPNnV9lChoBmgJaA9DCGyVYHE4cwXAlIaUUpRoFUsyaBZHQKa6/aC+UQl1fZQoaAZoCWgPQwh7hJohVVT0v5SGlFKUaBVLMmgWR0CmusPVd5Y6dX2UKGgGaAloD0MI7Z3RViWR+b+UhpRSlGgVSzJoFkdAprqIrWiDd3V9lChoBmgJaA9DCKcGms+5ewrAlIaUUpRoFUsyaBZHQKa8Qj2zv7Z1fZQoaAZoCWgPQwgxzt+EQgT0v5SGlFKUaBVLMmgWR0CmvAmPYFq0dX2UKGgGaAloD0MILSP1nsrp97+UhpRSlGgVSzJoFkdAprvP3pOernV9lChoBmgJaA9DCIyfxr35zQrAlIaUUpRoFUsyaBZHQKa7lMWXTmZ1fZQoaAZoCWgPQwjso1NXPkv/v5SGlFKUaBVLMmgWR0CmvU8Gs3hodX2UKGgGaAloD0MIGCe+2lFcBcCUhpRSlGgVSzJoFkdApr0WkFfReHV9lChoBmgJaA9DCMTpJFtdfhDAlIaUUpRoFUsyaBZHQKa83MeOn2t1fZQoaAZoCWgPQwj52ch1U+oHwJSGlFKUaBVLMmgWR0CmvKGRFI/adX2UKGgGaAloD0MIFK5H4XpUBMCUhpRSlGgVSzJoFkdApr5XnhbW3HV9lChoBmgJaA9DCGovou2YuvW/lIaUUpRoFUsyaBZHQKa+Hxqfvnd1fZQoaAZoCWgPQwgAAWvVrokJwJSGlFKUaBVLMmgWR0CmveVT72tddX2UKGgGaAloD0MIiujX1k9/D8CUhpRSlGgVSzJoFkdApr2qJbdJrnV9lChoBmgJaA9DCO2ZJQFqqgjAlIaUUpRoFUsyaBZHQKa/WJIlMRJ1fZQoaAZoCWgPQwisNv+vOlIPwJSGlFKUaBVLMmgWR0Cmvx//NqxkdX2UKGgGaAloD0MIAi7IluVLCsCUhpRSlGgVSzJoFkdApr7mPaL4vnV9lChoBmgJaA9DCE890uC2Vg3AlIaUUpRoFUsyaBZHQKa+qxVyWAx1fZQoaAZoCWgPQwgGSZ9W0d//v5SGlFKUaBVLMmgWR0CmwHFANXo1dX2UKGgGaAloD0MIc9U8R+S7A8CUhpRSlGgVSzJoFkdApsA4nx8UmHV9lChoBmgJaA9DCL4uw3+6AQTAlIaUUpRoFUsyaBZHQKa//vjOs1d1fZQoaAZoCWgPQwiOWItPAfAJwJSGlFKUaBVLMmgWR0Cmv8PdM0xedX2UKGgGaAloD0MIdCZtqu7R87+UhpRSlGgVSzJoFkdApsF4WHk92XV9lChoBmgJaA9DCFvs9lllRgLAlIaUUpRoFUsyaBZHQKbBP8OTaCd1fZQoaAZoCWgPQwiM9nghHZ78v5SGlFKUaBVLMmgWR0CmwQYuK4x2dX2UKGgGaAloD0MInff/ccKE/b+UhpRSlGgVSzJoFkdApsDLEBKcu3V9lChoBmgJaA9DCGTOM/YlWwHAlIaUUpRoFUsyaBZHQKbCfZQHiWF1fZQoaAZoCWgPQwiEYitoWkIMwJSGlFKUaBVLMmgWR0CmwkT4DcM3dX2UKGgGaAloD0MIYYkHlE25AMCUhpRSlGgVSzJoFkdApsILApKBd3V9lChoBmgJaA9DCIPAyqFFNvW/lIaUUpRoFUsyaBZHQKbBz9jPOY91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (670 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.9250981462188066, "std_reward": 0.8248344654041582, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-02T20:43:58.990265"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:940268e7278f47d4ce6616b680952189d4e5e09b6062b12cbd963dfc6e9efa95
3
+ size 3056