File size: 2,422 Bytes
8300e57
 
 
 
 
 
 
 
 
 
 
 
 
 
3aadfd4
8300e57
7c882e1
8300e57
 
f88addf
 
 
8300e57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c882e1
8300e57
 
 
 
 
7c882e1
 
 
 
 
 
 
 
 
 
 
 
8300e57
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: transcriber-t5-v8
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# transcriber-t5-v8

This model is a fine-tuned version of [odunola/transcriber-t5-v7](https://huggingface.co/odunola/transcriber-t5-v7) on the [odunola/transcriberv3](https://huggingface.co/datasets/odunola/transcriberv3) dataset. 
It achieves the following results on the evaluation set:
- Loss: 0.1924

## Model description
This model, a fine-tuned T5, is designed to pinpoint and extract specific Bible scriptures' chapter and verse from a string of text. It's a major component of a broader project but is also versatile enough for your other applications.

The model's learning is driven by a unique dataset, painstakingly compiled from transcripts of sermons on YouTube and various online platforms. This handpicked, curated data equips the model with a specialized understanding of religious discourse and biblical references.

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2215        | 0.23  | 500  | 0.2216          |
| 0.1814        | 0.47  | 1000 | 0.2197          |
| 0.2011        | 0.7   | 1500 | 0.2059          |
| 0.2595        | 0.94  | 2000 | 0.2009          |
| 0.2412        | 1.17  | 2500 | 0.2019          |
| 0.1785        | 1.41  | 3000 | 0.1970          |
| 0.1962        | 1.64  | 3500 | 0.1983          |
| 0.2009        | 1.88  | 4000 | 0.1963          |
| 0.2013        | 2.11  | 4500 | 0.1923          |
| 0.2715        | 2.35  | 5000 | 0.1929          |
| 0.2488        | 2.58  | 5500 | 0.1936          |
| 0.1185        | 2.81  | 6000 | 0.1924          |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3