File size: 7,823 Bytes
de04624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
model-index:
- name: lilt-en-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6055
- Answer: {'precision': 0.8728323699421965, 'recall': 0.9241126070991432, 'f1': 0.8977407847800237, 'number': 817}
- Header: {'precision': 0.6, 'recall': 0.5042016806722689, 'f1': 0.547945205479452, 'number': 119}
- Question: {'precision': 0.9, 'recall': 0.9108635097493036, 'f1': 0.9053991693585604, 'number': 1077}
- Overall Precision: 0.8740
- Overall Recall: 0.8922
- Overall F1: 0.8830
- Overall Accuracy: 0.8022

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Answer                                                                                                   | Header                                                                                                   | Question                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.4096        | 10.53  | 200  | 0.9947          | {'precision': 0.8293515358361775, 'recall': 0.8922888616891065, 'f1': 0.8596698113207547, 'number': 817} | {'precision': 0.5833333333333334, 'recall': 0.5294117647058824, 'f1': 0.5550660792951542, 'number': 119} | {'precision': 0.8858195211786372, 'recall': 0.89322191272052, 'f1': 0.8895053166897827, 'number': 1077}   | 0.8461            | 0.8713         | 0.8585     | 0.8133           |
| 0.0451        | 21.05  | 400  | 1.4850          | {'precision': 0.8394495412844036, 'recall': 0.8959608323133414, 'f1': 0.866785079928952, 'number': 817}  | {'precision': 0.6333333333333333, 'recall': 0.4789915966386555, 'f1': 0.5454545454545454, 'number': 119} | {'precision': 0.9026974951830443, 'recall': 0.8700092850510678, 'f1': 0.8860520094562647, 'number': 1077} | 0.863             | 0.8574         | 0.8602     | 0.7910           |
| 0.0147        | 31.58  | 600  | 1.5603          | {'precision': 0.8478260869565217, 'recall': 0.9069767441860465, 'f1': 0.8764044943820224, 'number': 817} | {'precision': 0.6336633663366337, 'recall': 0.5378151260504201, 'f1': 0.5818181818181819, 'number': 119} | {'precision': 0.8845807033363391, 'recall': 0.9108635097493036, 'f1': 0.8975297346752059, 'number': 1077} | 0.8570            | 0.8872         | 0.8719     | 0.7948           |
| 0.0077        | 42.11  | 800  | 1.7433          | {'precision': 0.8344444444444444, 'recall': 0.9192166462668299, 'f1': 0.8747815958066395, 'number': 817} | {'precision': 0.5596330275229358, 'recall': 0.5126050420168067, 'f1': 0.5350877192982455, 'number': 119} | {'precision': 0.9031954887218046, 'recall': 0.8922934076137419, 'f1': 0.897711349836525, 'number': 1077}  | 0.8553            | 0.8808         | 0.8678     | 0.7910           |
| 0.004         | 52.63  | 1000 | 1.6055          | {'precision': 0.8728323699421965, 'recall': 0.9241126070991432, 'f1': 0.8977407847800237, 'number': 817} | {'precision': 0.6, 'recall': 0.5042016806722689, 'f1': 0.547945205479452, 'number': 119}                 | {'precision': 0.9, 'recall': 0.9108635097493036, 'f1': 0.9053991693585604, 'number': 1077}                | 0.8740            | 0.8922         | 0.8830     | 0.8022           |
| 0.0021        | 63.16  | 1200 | 1.7317          | {'precision': 0.8688524590163934, 'recall': 0.9082007343941249, 'f1': 0.8880909634949131, 'number': 817} | {'precision': 0.5904761904761905, 'recall': 0.5210084033613446, 'f1': 0.5535714285714286, 'number': 119} | {'precision': 0.8847184986595175, 'recall': 0.9192200557103064, 'f1': 0.9016393442622952, 'number': 1077} | 0.8633            | 0.8912         | 0.8770     | 0.7979           |
| 0.0017        | 73.68  | 1400 | 1.7249          | {'precision': 0.8705463182897862, 'recall': 0.8971848225214198, 'f1': 0.8836648583484027, 'number': 817} | {'precision': 0.5555555555555556, 'recall': 0.5042016806722689, 'f1': 0.5286343612334802, 'number': 119} | {'precision': 0.8818181818181818, 'recall': 0.9006499535747446, 'f1': 0.891134588883785, 'number': 1077}  | 0.86              | 0.8758         | 0.8678     | 0.8014           |
| 0.0012        | 84.21  | 1600 | 1.8716          | {'precision': 0.8679678530424799, 'recall': 0.9253365973072215, 'f1': 0.8957345971563981, 'number': 817} | {'precision': 0.5652173913043478, 'recall': 0.5462184873949579, 'f1': 0.5555555555555555, 'number': 119} | {'precision': 0.898320895522388, 'recall': 0.8941504178272981, 'f1': 0.8962308050255934, 'number': 1077}  | 0.8669            | 0.8862         | 0.8764     | 0.7946           |
| 0.0006        | 94.74  | 1800 | 1.8381          | {'precision': 0.8563218390804598, 'recall': 0.9118727050183598, 'f1': 0.8832246591582691, 'number': 817} | {'precision': 0.6055045871559633, 'recall': 0.5546218487394958, 'f1': 0.5789473684210525, 'number': 119} | {'precision': 0.8931226765799256, 'recall': 0.8922934076137419, 'f1': 0.8927078495123084, 'number': 1077} | 0.8623            | 0.8803         | 0.8712     | 0.7954           |
| 0.0007        | 105.26 | 2000 | 1.7090          | {'precision': 0.8822115384615384, 'recall': 0.8984088127294981, 'f1': 0.8902365069739235, 'number': 817} | {'precision': 0.576271186440678, 'recall': 0.5714285714285714, 'f1': 0.5738396624472574, 'number': 119}  | {'precision': 0.8811881188118812, 'recall': 0.9090064995357474, 'f1': 0.8948811700182815, 'number': 1077} | 0.8641            | 0.8847         | 0.8743     | 0.8122           |
| 0.0003        | 115.79 | 2200 | 1.7487          | {'precision': 0.8730723606168446, 'recall': 0.9008567931456548, 'f1': 0.8867469879518072, 'number': 817} | {'precision': 0.5645161290322581, 'recall': 0.5882352941176471, 'f1': 0.5761316872427984, 'number': 119} | {'precision': 0.8936755270394133, 'recall': 0.9052924791086351, 'f1': 0.8994464944649446, 'number': 1077} | 0.8654            | 0.8847         | 0.8750     | 0.8084           |
| 0.0002        | 126.32 | 2400 | 1.7644          | {'precision': 0.8686046511627907, 'recall': 0.9143206854345165, 'f1': 0.8908765652951699, 'number': 817} | {'precision': 0.5932203389830508, 'recall': 0.5882352941176471, 'f1': 0.5907172995780592, 'number': 119} | {'precision': 0.8961397058823529, 'recall': 0.9052924791086351, 'f1': 0.9006928406466513, 'number': 1077} | 0.8674            | 0.8902         | 0.8786     | 0.8091           |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3