|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
import numpy as np |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
class PositionalEncoding(nn.Module): |
|
|
|
def __init__(self, d_hid, n_position=200): |
|
super(PositionalEncoding, self).__init__() |
|
|
|
|
|
self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid)) |
|
|
|
def _get_sinusoid_encoding_table(self, n_position, d_hid): |
|
''' Sinusoid position encoding table ''' |
|
|
|
def get_position_angle_vec(position): |
|
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] |
|
|
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) |
|
sinusoid_table[0::2] = np.sin(sinusoid_table[0::2]) |
|
sinusoid_table[1::2] = np.cos(sinusoid_table[1::2]) |
|
|
|
return torch.FloatTensor(sinusoid_table).unsqueeze(1) |
|
|
|
def forward(self, x): |
|
return x + self.pos_table[:, :x.size(1)].clone().detach() |
|
|
|
class CrossAttention(nn.Module): |
|
""" |
|
borrowed from https://github.com/openai/CLIP/blob/main/clip/model.py (AttentionPool2d) |
|
""" |
|
def __init__(self, |
|
dim: int, |
|
kv_dim: int, |
|
output_dim: int = None, |
|
num_heads: int = None, |
|
context_length: int = None, |
|
norm_layer=nn.LayerNorm, |
|
learned_ape=True, |
|
**kwargs): |
|
super().__init__() |
|
embed_dim = dim |
|
output_dim = output_dim |
|
self.learned_ape = learned_ape |
|
if learned_ape: |
|
self.positional_embedding = nn.Parameter(torch.randn(context_length, embed_dim) / embed_dim ** 0.5) |
|
else: |
|
self.positional_embedding = PositionalEncoding(embed_dim, context_length) |
|
self.context_length = context_length |
|
self.q_proj = nn.Linear(embed_dim, embed_dim) |
|
self.k_proj = nn.Linear(kv_dim, embed_dim) |
|
self.v_proj = nn.Linear(kv_dim, embed_dim) |
|
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) |
|
self.num_heads = num_heads |
|
self.norm = norm_layer(dim) |
|
|
|
def forward(self, x_q, x_kv, print_maps=False): |
|
x_q = x_q.permute(1, 0, 2) |
|
x_kv = x_kv.permute(1, 0, 2) |
|
|
|
if self.learned_ape: |
|
x_q = x_q + self.positional_embedding[:x_q.shape[0], None, :].to(x_q.dtype) |
|
else: |
|
x_q = self.positional_embedding(x_q) |
|
x, _ = F.multi_head_attention_forward( |
|
query=x_q, key=x_kv, value=x_kv, |
|
embed_dim_to_check=x_q.shape[-1], |
|
num_heads=self.num_heads, |
|
q_proj_weight=self.q_proj.weight, |
|
k_proj_weight=self.k_proj.weight, |
|
v_proj_weight=self.v_proj.weight, |
|
in_proj_weight=None, |
|
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), |
|
bias_k=None, |
|
bias_v=None, |
|
add_zero_attn=False, |
|
dropout_p=0, |
|
out_proj_weight=self.c_proj.weight, |
|
out_proj_bias=self.c_proj.bias, |
|
use_separate_proj_weight=True, |
|
training=self.training, |
|
need_weights=False, |
|
|
|
) |
|
if self.norm: |
|
x = self.norm(x) |
|
x = x.permute(1, 0, 2) |
|
return x |
|
|
|
|
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (int): window size |
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
r""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
pretrained_window_size (tuple[int]): The height and width of the window in pre-training. |
|
""" |
|
|
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0., |
|
pretrained_window_size=[0, 0]): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.pretrained_window_size = pretrained_window_size |
|
self.num_heads = num_heads |
|
|
|
self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True) |
|
|
|
|
|
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(512, num_heads, bias=False)) |
|
|
|
|
|
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32) |
|
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32) |
|
relative_coords_table = torch.stack( |
|
torch.meshgrid([relative_coords_h, |
|
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) |
|
if pretrained_window_size[0] > 0: |
|
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1) |
|
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1) |
|
else: |
|
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1) |
|
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1) |
|
relative_coords_table *= 8 |
|
relative_coords_table = torch.sign(relative_coords_table) * torch.log2( |
|
torch.abs(relative_coords_table) + 1.0) / np.log2(8) |
|
|
|
self.register_buffer("relative_coords_table", relative_coords_table) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask=None, v_length=None): |
|
""" |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)) |
|
logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01)).to(self.logit_scale.device)).exp() |
|
attn = attn * logit_scale |
|
|
|
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads) |
|
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
relative_position_bias = 16 * torch.sigmoid(relative_position_bias) |
|
attn[..., :v_length, :v_length] = attn[..., :v_length, :v_length] + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f'dim={self.dim}, window_size={self.window_size}, ' \ |
|
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}' |
|
|
|
def flops(self, N): |
|
|
|
flops = 0 |
|
|
|
flops += N * self.dim * 3 * self.dim |
|
|
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
|
|
flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
|
|
flops += N * self.dim * self.dim |
|
return flops |
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
r""" Swin Transformer Block. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resulotion. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
pretrained_window_size (int): Window size in pre-training. |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, |
|
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm, pretrained_window_size=0, lm_d_model=None): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
if min(self.input_resolution) <= self.window_size: |
|
|
|
self.shift_size = 0 |
|
self.window_size = min(self.input_resolution) |
|
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention( |
|
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, |
|
qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop, |
|
pretrained_window_size=to_2tuple(pretrained_window_size)) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
if self.shift_size > 0: |
|
|
|
H, W = self.input_resolution |
|
img_mask = torch.zeros((1, H, W, 1)) |
|
h_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
w_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, -self.shift_size), |
|
slice(-self.shift_size, None)) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, context_prompts=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B, L, C = x.shape |
|
H, W = self.input_resolution |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
shortcut = x |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
|
|
pad_l = pad_t = 0 |
|
pad_r = (self.window_size - W % self.window_size) % self.window_size |
|
pad_b = (self.window_size - H % self.window_size) % self.window_size |
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) |
|
_, Hp, Wp, _ = x.shape |
|
|
|
|
|
if self.shift_size > 0: |
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
|
|
else: |
|
shifted_x = x |
|
|
|
|
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) |
|
|
|
|
|
attn_windows = self.attn(x_windows, v_length=self.window_size * self.window_size) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
else: |
|
x = shifted_x |
|
|
|
if pad_r > 0 or pad_b > 0: |
|
x = x[:, :H, :W, :].contiguous() |
|
|
|
x = x.view(B, H * W, C) |
|
|
|
x = shortcut + self.drop_path(self.norm1(x)) |
|
|
|
|
|
x = x + self.drop_path(self.norm2(self.mlp(x))) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ |
|
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" |
|
|
|
def flops(self): |
|
flops = 0 |
|
H, W = self.input_resolution |
|
|
|
flops += self.dim * H * W |
|
|
|
nW = H * W / self.window_size / self.window_size |
|
flops += nW * self.attn.flops(self.window_size * self.window_size) |
|
|
|
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio |
|
|
|
flops += self.dim * H * W |
|
return flops |
|
|
|
|
|
class Vilma(nn.Module): |
|
r""" Vision-Language Marge Attention layer. |
|
""" |
|
|
|
def __init__(self, |
|
input_resolution, |
|
dim, |
|
num_heads, |
|
lm_d_model, |
|
vl_learned_ape=True, |
|
norm_layer=nn.LayerNorm, |
|
reduce=True, |
|
**kwargs): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) if reduce else nn.Linear(4 * dim, 4 * dim, bias=False) |
|
self.norm = norm_layer(2 * dim) if reduce else norm_layer(4 * dim) |
|
self.cross_attn = CrossAttention(dim=dim * 4, |
|
kv_dim=lm_d_model, |
|
context_length=self.input_resolution[0] // 2 * self.input_resolution[1] // 2, |
|
output_dim=dim * 4, |
|
num_heads=num_heads, |
|
learned_ape=vl_learned_ape |
|
) |
|
nn.init.eye_(self.cross_attn.q_proj.weight) |
|
nn.init.constant_(self.cross_attn.q_proj.bias, 0) |
|
self.cross_attn.q_proj.requires_grad_(False) |
|
self.vl_alpha = 0.5 |
|
|
|
def forward(self, x, context_prompts, **kwargs): |
|
""" |
|
x: B, H*W, C |
|
""" |
|
H, W = self.input_resolution |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
x0 = x[:, 0::2, 0::2, :] |
|
x1 = x[:, 1::2, 0::2, :] |
|
x2 = x[:, 0::2, 1::2, :] |
|
x3 = x[:, 1::2, 1::2, :] |
|
x = torch.cat([x0, x1, x2, x3], -1) |
|
x = x.view(B, -1, 4 * C) |
|
|
|
x_vl = self.cross_attn(x, context_prompts) |
|
x = self.vl_alpha * x_vl + (1 - self.vl_alpha) * x |
|
|
|
x = self.reduction(x) |
|
x = self.norm(x) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"input_resolution={self.input_resolution}, dim={self.dim}" |
|
|
|
def flops(self): |
|
H, W = self.input_resolution |
|
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim |
|
flops += H * W * self.dim // 2 |
|
return flops |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" A basic Swin Transformer layer for one stage. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Local window size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
pretrained_window_size (int): Local window size in pre-training. |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, depth, num_heads, window_size, |
|
mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., |
|
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, |
|
pretrained_window_size=0, do_shift=True, lm_d_model=None): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.depth = depth if do_shift else 1 |
|
self.use_checkpoint = use_checkpoint |
|
|
|
self.blocks = nn.ModuleList([ |
|
SwinTransformerBlock(dim=dim, input_resolution=input_resolution, |
|
num_heads=num_heads, window_size=window_size, |
|
shift_size=0 if ((i % 2 == 0) or (not do_shift)) else window_size // 2, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop, attn_drop=attn_drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
norm_layer=norm_layer, |
|
pretrained_window_size=pretrained_window_size, |
|
lm_d_model=lm_d_model) |
|
for i in range(self.depth)]) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample(input_resolution=input_resolution, |
|
dim=dim, |
|
norm_layer=norm_layer, |
|
num_heads=num_heads, |
|
lm_d_model=lm_d_model |
|
) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, context_prompts=None): |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x = blk(x, context_prompts=context_prompts) |
|
if self.downsample is not None: |
|
x = self.downsample(x, context_prompts=context_prompts) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" |
|
|
|
def flops(self): |
|
flops = 0 |
|
for blk in self.blocks: |
|
flops += blk.flops() |
|
if self.downsample is not None: |
|
flops += self.downsample.flops() |
|
return flops |
|
|
|
def _init_respostnorm(self): |
|
for blk in self.blocks: |
|
nn.init.constant_(blk.norm1.bias, 0) |
|
nn.init.constant_(blk.norm1.weight, 0) |
|
nn.init.constant_(blk.norm2.bias, 0) |
|
nn.init.constant_(blk.norm2.weight, 0) |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
r""" Image to Patch Embedding |
|
Args: |
|
img_size (int or tuple): Image size. Default: 224. |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
|
|
assert H == self.img_size[0] and W == self.img_size[1], \ |
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
if self.norm is not None: |
|
x = self.norm(x) |
|
return x |
|
|
|
def flops(self): |
|
Ho, Wo = self.patches_resolution |
|
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) |
|
if self.norm is not None: |
|
flops += Ho * Wo * self.embed_dim |
|
return flops |
|
|
|
|
|
class PatchEmbed1D(nn.Module): |
|
r""" 1D Image to Patch Embedding (if for example patches are prextracted) |
|
Args: |
|
img_size (int or tuple): Image size. Default: 224. |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, in_chans=3, embed_dim=96, norm_layer=None, img_size=-1, patch_size=-1, **kwargs): |
|
super().__init__() |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
self.proj = nn.Conv1d(in_chans, embed_dim, kernel_size=1, stride=1) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
B, L, C = x.shape |
|
x = x.permute(0, 2, 1) |
|
x = self.proj(x).flatten(2).permute(0, 2, 1) |
|
if self.norm is not None: |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class VilmaSwinTransformerV2(nn.Module): |
|
r""" Swin Transformer with Vilma downsampling and cross attention layers |
|
borrow from https://github.com/microsoft/Swin-Transformer-V2/blob/main/models/swin_transformer_v2.py |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, |
|
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], |
|
window_size=7, mlp_ratio=4., qkv_bias=True, |
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, |
|
norm_layer=nn.LayerNorm, ape=False, patch_norm=True, |
|
use_checkpoint=False, pretrained_window_sizes=[0, 0, 0, 0], |
|
embedd_matcher_dim=512, do_shift=True, |
|
vl_cross_attn_layers=[], vl_alpha=0.5, lm_d_model=512, |
|
input_type='rgb', vl_learned_ape=True): |
|
super().__init__() |
|
self.model_name = 'swin_v2' |
|
|
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.ape = ape |
|
self.patch_norm = patch_norm |
|
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) |
|
self.mlp_ratio = mlp_ratio |
|
self.input_type = input_type |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
num_patches = self.patch_embed.num_patches |
|
patches_resolution = self.patch_embed.patches_resolution |
|
self.patches_resolution = patches_resolution |
|
|
|
|
|
if self.ape: |
|
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) |
|
trunc_normal_(self.absolute_pos_embed, std=.02) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
self.vl_cross_attn_layers = nn.ModuleDict({str(i): None for i in vl_cross_attn_layers}) |
|
self.vl_alpha = vl_alpha |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), |
|
input_resolution=(patches_resolution[0] // (2 ** i_layer), |
|
patches_resolution[1] // (2 ** i_layer)), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
mlp_ratio=self.mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=Vilma if (i_layer < self.num_layers - 1) else None, |
|
use_checkpoint=use_checkpoint, |
|
pretrained_window_size=pretrained_window_sizes[i_layer], |
|
do_shift=do_shift, |
|
lm_d_model=lm_d_model) |
|
self.layers.append(layer) |
|
if str(i_layer) in self.vl_cross_attn_layers: |
|
layer_factor = i_layer + int(i_layer < self.num_layers - 1) |
|
self.vl_cross_attn_layers.update({ |
|
str(i_layer): CrossAttention( |
|
dim=int(embed_dim * 2 ** layer_factor), |
|
kv_dim=lm_d_model, |
|
context_length=patches_resolution[0] // (2 ** layer_factor) * patches_resolution[1] // (2 ** layer_factor), |
|
num_heads=num_heads[i_layer], |
|
vl_learned_ape=vl_learned_ape) |
|
}) |
|
|
|
self.norm = norm_layer(self.num_features) |
|
|
|
self.embedd_matcher_dim = embedd_matcher_dim |
|
|
|
self.apply(self._init_weights) |
|
for bly in self.layers: |
|
bly._init_respostnorm() |
|
|
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'absolute_pos_embed'} |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay_keywords(self): |
|
return {"cpb_mlp", "logit_scale", 'relative_position_bias_table'} |
|
|
|
def forward_features(self, x, context_prompts=None): |
|
x = self.patch_embed(x) |
|
if self.ape: |
|
x = x + self.absolute_pos_embed |
|
x = self.pos_drop(x) |
|
|
|
for i, layer in enumerate(self.layers): |
|
assert context_prompts is not None, 'Context prompt is None' |
|
x = layer(x, context_prompts) |
|
x_vl = self.vl_cross_attn_layers[str(i)](x, context_prompts) |
|
x = self.vl_alpha * x_vl + (1 - self.vl_alpha) * x |
|
x = self.norm(x) |
|
return x |
|
|
|
def forward(self, x, **kwargs): |
|
x = self.forward_features(x, **kwargs) |
|
return x |
|
|
|
def flops(self): |
|
flops = 0 |
|
flops += self.patch_embed.flops() |
|
for i, layer in enumerate(self.layers): |
|
flops += layer.flops() |
|
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) |
|
return flops |
|
|