File size: 3,453 Bytes
9382de3
ae2e229
 
 
 
 
 
 
 
 
9382de3
 
ae2e229
 
9382de3
ae2e229
9382de3
ae2e229
 
 
 
 
 
 
 
 
9382de3
ae2e229
9382de3
ae2e229
9382de3
ae2e229
9382de3
ae2e229
9382de3
ae2e229
9382de3
c16d5ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9382de3
ae2e229
9382de3
ae2e229
9382de3
ae2e229
 
 
 
 
 
 
 
 
 
 
 
9382de3
ae2e229
9382de3
ae2e229
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: cc-by-nc-4.0
base_model: facebook/mms-300m
tags:
- generated_from_trainer
datasets:
- audiofolder
model-index:
- name: wav2vec2-mms-300m-ikk-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-mms-300m-ikk-3

This model is a fine-tuned version of [facebook/mms-300m](https://huggingface.co/facebook/mms-300m) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.3763
- eval_wer: 0.5580
- eval_runtime: 6.8853
- eval_samples_per_second: 14.233
- eval_steps_per_second: 1.888
- epoch: 19.59
- step: 480

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

Step	Training Loss	Validation Loss	Wer
40	9.648200	4.719201	1.000000
80	3.953400	3.477898	1.000000
120	3.289700	3.099611	1.000000
160	3.038400	2.993551	1.000000
200	2.994500	2.979574	1.000000
240	2.959000	2.941970	1.000000
280	2.802100	2.520133	1.000000
320	1.862100	1.499739	0.746423
360	1.191800	1.336315	0.610261
400	0.951300	1.317062	0.598915
440	0.773900	1.312918	0.614702
480	0.624700	1.376327	0.557967

/usr/local/lib/python3.10/dist-packages/transformers/models/wav2vec2/processing_wav2vec2.py:156: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/transformers/models/wav2vec2/processing_wav2vec2.py:156: UserWarning: `as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your labels by using the argument `text` of the regular `__call__` method (either in the same call as your audio inputs, or in a separate call.
  warnings.warn(
/usr/local/lib/python3.10/dist-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
  warnings.warn(

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2