Update README.md
Browse files
README.md
CHANGED
@@ -1,46 +1,46 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
- 4-bit
|
6 |
-
- BF16
|
7 |
-
- FlashAttn2
|
8 |
-
- Pokémon
|
9 |
-
- EMA
|
10 |
-
- fast-training
|
11 |
-
- text-generation
|
12 |
-
- chat
|
13 |
-
- transformers
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
---
|
21 |
-
|
22 |
-
# Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
|
23 |
-
|
24 |
-
This is a LoRA-fused model based on **Qwen/Qwen2.5-7B-Instruct**.
|
25 |
-
|
26 |
-
## Model Description
|
27 |
-
|
28 |
-
- **Model Name**: Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
|
29 |
-
- **Language**: en
|
30 |
-
- **License**: apache-2.0
|
31 |
-
- **Dataset**: ogmatrixllm/pokemon-lore-instructions
|
32 |
-
- **Tags**: LoRA, 4-bit, BF16, FlashAttn2, Pokémon, EMA, fast-training, text-generation, chat, transformers
|
33 |
-
|
34 |
-
## Usage
|
35 |
-
|
36 |
-
```python
|
37 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
38 |
-
|
39 |
-
tokenizer = AutoTokenizer.from_pretrained("ogmatrixllm/arcadex-llm")
|
40 |
-
model = AutoModelForCausalLM.from_pretrained("ogmatrixllm/arcadex-llm")
|
41 |
-
|
42 |
-
prompt = "Hello, world!"
|
43 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
44 |
-
outputs = model.generate(**inputs)
|
45 |
-
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
46 |
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- LoRA
|
5 |
+
- 4-bit
|
6 |
+
- BF16
|
7 |
+
- FlashAttn2
|
8 |
+
- Pokémon
|
9 |
+
- EMA
|
10 |
+
- fast-training
|
11 |
+
- text-generation
|
12 |
+
- chat
|
13 |
+
- transformers
|
14 |
+
language: en
|
15 |
+
datasets:
|
16 |
+
- ogmatrixllm/pokemon-lore-instructions
|
17 |
+
finetuned_from: Qwen/Qwen2.5-7B-Instruct
|
18 |
+
tasks:
|
19 |
+
- text-generation
|
20 |
+
---
|
21 |
+
|
22 |
+
# Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
|
23 |
+
|
24 |
+
This is a LoRA-fused model based on **Qwen/Qwen2.5-7B-Instruct**.
|
25 |
+
|
26 |
+
## Model Description
|
27 |
+
|
28 |
+
- **Model Name**: Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
|
29 |
+
- **Language**: en
|
30 |
+
- **License**: apache-2.0
|
31 |
+
- **Dataset**: ogmatrixllm/pokemon-lore-instructions
|
32 |
+
- **Tags**: LoRA, 4-bit, BF16, FlashAttn2, Pokémon, EMA, fast-training, text-generation, chat, transformers
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
38 |
+
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("ogmatrixllm/arcadex-llm")
|
40 |
+
model = AutoModelForCausalLM.from_pretrained("ogmatrixllm/arcadex-llm")
|
41 |
+
|
42 |
+
prompt = "Hello, world!"
|
43 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
44 |
+
outputs = model.generate(**inputs)
|
45 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
46 |
|