ogmatrixllm commited on
Commit
1cc199e
·
verified ·
1 Parent(s): 2dfb24f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -45
README.md CHANGED
@@ -1,46 +1,46 @@
1
- ---
2
- license: apache-2.0
3
- tags:
4
- - LoRA
5
- - 4-bit
6
- - BF16
7
- - FlashAttn2
8
- - Pokémon
9
- - EMA
10
- - fast-training
11
- - text-generation
12
- - chat
13
- - transformers
14
- language: en
15
- datasets:
16
- - ogmatrixllm/pokemon-lore-instructions
17
- finetuned_from: Qwen/Qwen2.5-7B-Instruct
18
- tasks:
19
- - text-generation
20
- ---
21
-
22
- # Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
23
-
24
- This is a LoRA-fused model based on **Qwen/Qwen2.5-7B-Instruct**.
25
-
26
- ## Model Description
27
-
28
- - **Model Name**: Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
29
- - **Language**: en
30
- - **License**: apache-2.0
31
- - **Dataset**: ogmatrixllm/pokemon-lore-instructions
32
- - **Tags**: LoRA, 4-bit, BF16, FlashAttn2, Pokémon, EMA, fast-training, text-generation, chat, transformers
33
-
34
- ## Usage
35
-
36
- ```python
37
- from transformers import AutoTokenizer, AutoModelForCausalLM
38
-
39
- tokenizer = AutoTokenizer.from_pretrained("ogmatrixllm/arcadex-llm")
40
- model = AutoModelForCausalLM.from_pretrained("ogmatrixllm/arcadex-llm")
41
-
42
- prompt = "Hello, world!"
43
- inputs = tokenizer(prompt, return_tensors="pt")
44
- outputs = model.generate(**inputs)
45
- print(tokenizer.decode(outputs[0], skip_special_tokens=True))
46
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - LoRA
5
+ - 4-bit
6
+ - BF16
7
+ - FlashAttn2
8
+ - Pokémon
9
+ - EMA
10
+ - fast-training
11
+ - text-generation
12
+ - chat
13
+ - transformers
14
+ language: en
15
+ datasets:
16
+ - ogmatrixllm/pokemon-lore-instructions
17
+ finetuned_from: Qwen/Qwen2.5-7B-Instruct
18
+ tasks:
19
+ - text-generation
20
+ ---
21
+
22
+ # Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
23
+
24
+ This is a LoRA-fused model based on **Qwen/Qwen2.5-7B-Instruct**.
25
+
26
+ ## Model Description
27
+
28
+ - **Model Name**: Qwen2.5-Coder-7B LoRA 4-bit BF16 w/ FlashAttn2, short seq=512 for faster iteration
29
+ - **Language**: en
30
+ - **License**: apache-2.0
31
+ - **Dataset**: ogmatrixllm/pokemon-lore-instructions
32
+ - **Tags**: LoRA, 4-bit, BF16, FlashAttn2, Pokémon, EMA, fast-training, text-generation, chat, transformers
33
+
34
+ ## Usage
35
+
36
+ ```python
37
+ from transformers import AutoTokenizer, AutoModelForCausalLM
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained("ogmatrixllm/arcadex-llm")
40
+ model = AutoModelForCausalLM.from_pretrained("ogmatrixllm/arcadex-llm")
41
+
42
+ prompt = "Hello, world!"
43
+ inputs = tokenizer(prompt, return_tensors="pt")
44
+ outputs = model.generate(**inputs)
45
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
46