File size: 17,005 Bytes
c3ecbbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
2024-07-17 06:14:19,185 - INFO: Calling run..
2024-07-17 06:14:19,186 - INFO: Environment configuration: ConfigNLPCausalClassificationEnvironment(gpus=['0'], mixed_precision=False, compile_model=False, use_deepspeed=False, deepspeed_reduce_bucket_size=10000000.0, deepspeed_stage3_prefetch_bucket_size=10000000.0, deepspeed_stage3_param_persistence_threshold=10000000.0, deepspeed_offload_optimizer=False, deepspeed_stage3_max_live_parameters=10000000.0, deepspeed_stage3_max_reuse_distance=10000000.0, find_unused_parameters=False, trust_remote_code=False, huggingface_branch='main', number_of_workers=8, seed=-1, _seed=0, _distributed=False, _distributed_inference=True, _local_rank=0, _world_size=1, _curr_step=0, _curr_val_step=0, _rank=0, _device='cuda', _cpu_comm=None, _model_card_template='text_causal_classification_model_card_template.md', _summary_card_template='text_causal_classification_experiment_summary_card_template.md')
2024-07-17 06:14:19,186 - INFO: cfg.environment._distributed set to False
2024-07-17 06:14:19,186 - INFO: Problem Type: text_causal_classification_modeling
2024-07-17 06:14:19,186 - INFO: Global random seed: 419783
2024-07-17 06:14:19,186 - INFO: Preparing the data...
2024-07-17 06:14:19,186 - INFO: Setting up automatic validation split...
2024-07-17 06:14:19,192 - INFO: The dataframe has following columns: Index(['Description', 'category', 'sub_category', 'label'], dtype='object')
2024-07-17 06:14:19,195 - INFO: Preparing train and validation data, dataset config to be used: ConfigNLPCausalClassificationDataset(dataset_class=<class 'llm_studio.src.datasets.text_causal_classification_ds.CustomDataset'>, personalize=False, chatbot_name='OI_AI', chatbot_author='openinnovation.ai', train_dataframe='/app/train_df.csv', validation_strategy='automatic', validation_dataframe='/app/validation_df.csv', validation_size=0.0099999998, data_sample=1.0, data_sample_choice=('Train', 'Validation'), system_column='None', prompt_column=(), answer_column='category', parent_id_column='None', text_system_start='', text_prompt_start='', text_answer_separator='', limit_chained_samples=False, add_eos_token_to_system=False, add_eos_token_to_prompt=False, add_eos_token_to_answer=False, mask_prompt_labels=True, _allowed_file_extensions=('csv', 'pq', 'parquet'), num_classes=2)
2024-07-17 06:14:19,195 - INFO: Loading train dataset...
2024-07-17 06:14:19,195 - INFO: Columns found: Index(['Description', 'category', 'sub_category', 'label'], dtype='object')
2024-07-17 06:14:20,210 - INFO: Loading validation dataset...
2024-07-17 06:14:20,791 - INFO: Number of observations in train dataset: 494
2024-07-17 06:14:20,791 - INFO: Number of observations in validation dataset: 5
2024-07-17 06:14:21,246 - WARNING: PAD token id not matching between config and tokenizer. Overwriting with tokenizer id.
2024-07-17 06:14:21,246 - INFO: Setting pretraining_tp of model config to 1.
2024-07-17 06:14:21,251 - INFO: Using int4 for backbone
2024-07-17 06:14:21,251 - INFO: Loading TinyLlama/TinyLlama_v1.1. This may take a while.
2024-07-17 06:14:35,909 - INFO: Loaded TinyLlama/TinyLlama_v1.1.
2024-07-17 06:14:35,916 - INFO: Lora module names: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']
2024-07-17 06:14:36,191 - INFO: Enough space available for saving model weights.Required space: 1003.87MB, Available space: 993953.90MB.
2024-07-17 06:14:36,200 - INFO: Optimizer AdamW has been provided with parameters {'weight_decay': 0.0, 'eps': 1e-08, 'betas': (0.8999999762, 0.9990000129), 'lr': 0.0001}
2024-07-17 06:14:36,637 - INFO: started process: 0, can_track: True, tracking_mode: TrackingMode.AFTER_EPOCH
2024-07-17 06:14:36,638 - INFO: Training Epoch: 1 / 1
2024-07-17 06:14:36,638 - INFO: train loss:   0%|          | 0/247 [00:00<?, ?it/s]
2024-07-17 06:14:36,787 - INFO: Evaluation step: 247
2024-07-17 06:14:40,478 - INFO: train loss: 0.69:   1%|          | 2/247 [00:03<07:50,  1.92s/it]
2024-07-17 06:14:44,085 - INFO: train loss: 0.69:   2%|1         | 4/247 [00:07<07:29,  1.85s/it]
2024-07-17 06:14:47,702 - INFO: train loss: 0.69:   2%|2         | 6/247 [00:11<07:21,  1.83s/it]
2024-07-17 06:14:51,319 - INFO: train loss: 0.69:   3%|3         | 8/247 [00:14<07:15,  1.82s/it]
2024-07-17 06:14:54,943 - INFO: train loss: 0.69:   4%|4         | 10/247 [00:18<07:11,  1.82s/it]
2024-07-17 06:14:58,568 - INFO: train loss: 0.69:   5%|4         | 12/247 [00:21<07:06,  1.82s/it]
2024-07-17 06:15:02,198 - INFO: train loss: 0.69:   6%|5         | 14/247 [00:25<07:03,  1.82s/it]
2024-07-17 06:15:05,836 - INFO: train loss: 0.69:   6%|6         | 16/247 [00:29<06:59,  1.82s/it]
2024-07-17 06:15:09,477 - INFO: train loss: 0.69:   7%|7         | 18/247 [00:32<06:56,  1.82s/it]
2024-07-17 06:15:13,118 - INFO: train loss: 0.69:   8%|8         | 20/247 [00:36<06:52,  1.82s/it]
2024-07-17 06:15:16,760 - INFO: train loss: 0.69:   9%|8         | 22/247 [00:40<06:49,  1.82s/it]
2024-07-17 06:15:20,405 - INFO: train loss: 0.69:  10%|9         | 24/247 [00:43<06:45,  1.82s/it]
2024-07-17 06:15:24,053 - INFO: train loss: 0.69:  11%|#         | 26/247 [00:47<06:42,  1.82s/it]
2024-07-17 06:15:27,704 - INFO: train loss: 0.69:  11%|#1        | 28/247 [00:51<06:39,  1.82s/it]
2024-07-17 06:15:31,359 - INFO: train loss: 0.69:  12%|#2        | 30/247 [00:54<06:35,  1.82s/it]
2024-07-17 06:15:35,012 - INFO: train loss: 0.69:  13%|#2        | 32/247 [00:58<06:32,  1.82s/it]
2024-07-17 06:15:38,664 - INFO: train loss: 0.69:  14%|#3        | 34/247 [01:02<06:28,  1.83s/it]
2024-07-17 06:15:42,324 - INFO: train loss: 0.69:  15%|#4        | 36/247 [01:05<06:25,  1.83s/it]
2024-07-17 06:15:45,991 - INFO: train loss: 0.69:  15%|#5        | 38/247 [01:09<06:22,  1.83s/it]
2024-07-17 06:15:49,653 - INFO: train loss: 0.69:  16%|#6        | 40/247 [01:13<06:18,  1.83s/it]
2024-07-17 06:15:53,319 - INFO: train loss: 0.69:  17%|#7        | 42/247 [01:16<06:15,  1.83s/it]
2024-07-17 06:15:56,988 - INFO: train loss: 0.69:  18%|#7        | 44/247 [01:20<06:11,  1.83s/it]
2024-07-17 06:16:00,655 - INFO: train loss: 0.69:  19%|#8        | 46/247 [01:24<06:08,  1.83s/it]
2024-07-17 06:16:04,324 - INFO: train loss: 0.69:  19%|#9        | 48/247 [01:27<06:04,  1.83s/it]
2024-07-17 06:16:07,995 - INFO: train loss: 0.69:  20%|##        | 50/247 [01:31<06:01,  1.83s/it]
2024-07-17 06:16:11,667 - INFO: train loss: 0.69:  21%|##1       | 52/247 [01:35<05:57,  1.83s/it]
2024-07-17 06:16:15,344 - INFO: train loss: 0.69:  22%|##1       | 54/247 [01:38<05:54,  1.84s/it]
2024-07-17 06:16:19,020 - INFO: train loss: 0.69:  23%|##2       | 56/247 [01:42<05:50,  1.84s/it]
2024-07-17 06:16:22,696 - INFO: train loss: 0.69:  23%|##3       | 58/247 [01:46<05:47,  1.84s/it]
2024-07-17 06:16:26,371 - INFO: train loss: 0.69:  24%|##4       | 60/247 [01:49<05:43,  1.84s/it]
2024-07-17 06:16:30,047 - INFO: train loss: 0.69:  25%|##5       | 62/247 [01:53<05:39,  1.84s/it]
2024-07-17 06:16:33,723 - INFO: train loss: 0.69:  26%|##5       | 64/247 [01:57<05:36,  1.84s/it]
2024-07-17 06:16:37,401 - INFO: train loss: 0.69:  27%|##6       | 66/247 [02:00<05:32,  1.84s/it]
2024-07-17 06:16:41,082 - INFO: train loss: 0.69:  28%|##7       | 68/247 [02:04<05:29,  1.84s/it]
2024-07-17 06:16:44,762 - INFO: train loss: 0.69:  28%|##8       | 70/247 [02:08<05:25,  1.84s/it]
2024-07-17 06:16:48,448 - INFO: train loss: 0.69:  29%|##9       | 72/247 [02:11<05:22,  1.84s/it]
2024-07-17 06:16:52,124 - INFO: train loss: 0.69:  30%|##9       | 74/247 [02:15<05:18,  1.84s/it]
2024-07-17 06:16:55,803 - INFO: train loss: 0.69:  31%|###       | 76/247 [02:19<05:14,  1.84s/it]
2024-07-17 06:16:59,486 - INFO: train loss: 0.69:  32%|###1      | 78/247 [02:22<05:10,  1.84s/it]
2024-07-17 06:17:03,165 - INFO: train loss: 0.69:  32%|###2      | 80/247 [02:26<05:07,  1.84s/it]
2024-07-17 06:17:06,841 - INFO: train loss: 0.69:  33%|###3      | 82/247 [02:30<05:03,  1.84s/it]
2024-07-17 06:17:10,530 - INFO: train loss: 0.69:  34%|###4      | 84/247 [02:33<05:00,  1.84s/it]
2024-07-17 06:17:14,215 - INFO: train loss: 0.69:  35%|###4      | 86/247 [02:37<04:56,  1.84s/it]
2024-07-17 06:17:17,898 - INFO: train loss: 0.69:  36%|###5      | 88/247 [02:41<04:52,  1.84s/it]
2024-07-17 06:17:21,582 - INFO: train loss: 0.69:  36%|###6      | 90/247 [02:44<04:49,  1.84s/it]
2024-07-17 06:17:25,270 - INFO: train loss: 0.69:  37%|###7      | 92/247 [02:48<04:45,  1.84s/it]
2024-07-17 06:17:28,955 - INFO: train loss: 0.69:  38%|###8      | 94/247 [02:52<04:41,  1.84s/it]
2024-07-17 06:17:32,638 - INFO: train loss: 0.69:  39%|###8      | 96/247 [02:55<04:38,  1.84s/it]
2024-07-17 06:17:36,324 - INFO: train loss: 0.69:  40%|###9      | 98/247 [02:59<04:34,  1.84s/it]
2024-07-17 06:17:40,011 - INFO: train loss: 0.69:  40%|####      | 100/247 [03:03<04:30,  1.84s/it]
2024-07-17 06:17:43,698 - INFO: train loss: 0.69:  41%|####1     | 102/247 [03:07<04:27,  1.84s/it]
2024-07-17 06:17:47,382 - INFO: train loss: 0.69:  42%|####2     | 104/247 [03:10<04:23,  1.84s/it]
2024-07-17 06:17:51,066 - INFO: train loss: 0.69:  43%|####2     | 106/247 [03:14<04:19,  1.84s/it]
2024-07-17 06:17:54,758 - INFO: train loss: 0.69:  44%|####3     | 108/247 [03:18<04:16,  1.84s/it]
2024-07-17 06:17:58,443 - INFO: train loss: 0.69:  45%|####4     | 110/247 [03:21<04:12,  1.84s/it]
2024-07-17 06:18:02,129 - INFO: train loss: 0.69:  45%|####5     | 112/247 [03:25<04:08,  1.84s/it]
2024-07-17 06:18:05,813 - INFO: train loss: 0.69:  46%|####6     | 114/247 [03:29<04:05,  1.84s/it]
2024-07-17 06:18:09,498 - INFO: train loss: 0.69:  47%|####6     | 116/247 [03:32<04:01,  1.84s/it]
2024-07-17 06:18:13,182 - INFO: train loss: 0.69:  48%|####7     | 118/247 [03:36<03:57,  1.84s/it]
2024-07-17 06:18:16,869 - INFO: train loss: 0.69:  49%|####8     | 120/247 [03:40<03:54,  1.84s/it]
2024-07-17 06:18:20,560 - INFO: train loss: 0.69:  49%|####9     | 122/247 [03:43<03:50,  1.84s/it]
2024-07-17 06:18:24,248 - INFO: train loss: 0.69:  50%|#####     | 124/247 [03:47<03:46,  1.84s/it]
2024-07-17 06:18:27,937 - INFO: train loss: 0.69:  51%|#####1    | 126/247 [03:51<03:43,  1.84s/it]
2024-07-17 06:18:31,621 - INFO: train loss: 0.69:  52%|#####1    | 128/247 [03:54<03:39,  1.84s/it]
2024-07-17 06:18:35,310 - INFO: train loss: 0.69:  53%|#####2    | 130/247 [03:58<03:35,  1.84s/it]
2024-07-17 06:18:38,999 - INFO: train loss: 0.69:  53%|#####3    | 132/247 [04:02<03:32,  1.84s/it]
2024-07-17 06:18:42,685 - INFO: train loss: 0.69:  54%|#####4    | 134/247 [04:06<03:28,  1.84s/it]
2024-07-17 06:18:46,373 - INFO: train loss: 0.69:  55%|#####5    | 136/247 [04:09<03:24,  1.84s/it]
2024-07-17 06:18:50,063 - INFO: train loss: 0.69:  56%|#####5    | 138/247 [04:13<03:21,  1.84s/it]
2024-07-17 06:18:53,753 - INFO: train loss: 0.69:  57%|#####6    | 140/247 [04:17<03:17,  1.84s/it]
2024-07-17 06:18:57,439 - INFO: train loss: 0.69:  57%|#####7    | 142/247 [04:20<03:13,  1.84s/it]
2024-07-17 06:19:01,127 - INFO: train loss: 0.69:  58%|#####8    | 144/247 [04:24<03:09,  1.84s/it]
2024-07-17 06:19:04,818 - INFO: train loss: 0.69:  59%|#####9    | 146/247 [04:28<03:06,  1.84s/it]
2024-07-17 06:19:08,506 - INFO: train loss: 0.69:  60%|#####9    | 148/247 [04:31<03:02,  1.84s/it]
2024-07-17 06:19:12,194 - INFO: train loss: 0.69:  61%|######    | 150/247 [04:35<02:58,  1.84s/it]
2024-07-17 06:19:15,881 - INFO: train loss: 0.69:  62%|######1   | 152/247 [04:39<02:55,  1.84s/it]
2024-07-17 06:19:19,570 - INFO: train loss: 0.69:  62%|######2   | 154/247 [04:42<02:51,  1.84s/it]
2024-07-17 06:19:23,257 - INFO: train loss: 0.69:  63%|######3   | 156/247 [04:46<02:47,  1.84s/it]
2024-07-17 06:19:26,952 - INFO: train loss: 0.69:  64%|######3   | 158/247 [04:50<02:44,  1.84s/it]
2024-07-17 06:19:30,641 - INFO: train loss: 0.69:  65%|######4   | 160/247 [04:54<02:40,  1.84s/it]
2024-07-17 06:19:34,331 - INFO: train loss: 0.69:  66%|######5   | 162/247 [04:57<02:36,  1.84s/it]
2024-07-17 06:19:38,020 - INFO: train loss: 0.69:  66%|######6   | 164/247 [05:01<02:33,  1.84s/it]
2024-07-17 06:19:41,710 - INFO: train loss: 0.69:  67%|######7   | 166/247 [05:05<02:29,  1.84s/it]
2024-07-17 06:19:45,399 - INFO: train loss: 0.69:  68%|######8   | 168/247 [05:08<02:25,  1.84s/it]
2024-07-17 06:19:49,092 - INFO: train loss: 0.69:  69%|######8   | 170/247 [05:12<02:22,  1.85s/it]
2024-07-17 06:19:52,778 - INFO: train loss: 0.69:  70%|######9   | 172/247 [05:16<02:18,  1.84s/it]
2024-07-17 06:19:56,471 - INFO: train loss: 0.69:  70%|#######   | 174/247 [05:19<02:14,  1.85s/it]
2024-07-17 06:20:00,161 - INFO: train loss: 0.69:  71%|#######1  | 176/247 [05:23<02:11,  1.85s/it]
2024-07-17 06:20:03,851 - INFO: train loss: 0.69:  72%|#######2  | 178/247 [05:27<02:07,  1.85s/it]
2024-07-17 06:20:07,541 - INFO: train loss: 0.69:  73%|#######2  | 180/247 [05:30<02:03,  1.85s/it]
2024-07-17 06:20:11,231 - INFO: train loss: 0.69:  74%|#######3  | 182/247 [05:34<01:59,  1.85s/it]
2024-07-17 06:20:14,920 - INFO: train loss: 0.69:  74%|#######4  | 184/247 [05:38<01:56,  1.84s/it]
2024-07-17 06:20:18,607 - INFO: train loss: 0.69:  75%|#######5  | 186/247 [05:41<01:52,  1.84s/it]
2024-07-17 06:20:22,292 - INFO: train loss: 0.69:  76%|#######6  | 188/247 [05:45<01:48,  1.84s/it]
2024-07-17 06:20:25,982 - INFO: train loss: 0.69:  77%|#######6  | 190/247 [05:49<01:45,  1.84s/it]
2024-07-17 06:20:29,678 - INFO: train loss: 0.69:  78%|#######7  | 192/247 [05:53<01:41,  1.85s/it]
2024-07-17 06:20:33,371 - INFO: train loss: 0.69:  79%|#######8  | 194/247 [05:56<01:37,  1.85s/it]
2024-07-17 06:20:37,064 - INFO: train loss: 0.69:  79%|#######9  | 196/247 [06:00<01:34,  1.85s/it]
2024-07-17 06:20:40,756 - INFO: train loss: 0.69:  80%|########  | 198/247 [06:04<01:30,  1.85s/it]
2024-07-17 06:20:44,444 - INFO: train loss: 0.69:  81%|########  | 200/247 [06:07<01:26,  1.85s/it]
2024-07-17 06:20:48,128 - INFO: train loss: 0.69:  82%|########1 | 202/247 [06:11<01:22,  1.84s/it]
2024-07-17 06:20:51,813 - INFO: train loss: 0.69:  83%|########2 | 204/247 [06:15<01:19,  1.84s/it]
2024-07-17 06:20:55,505 - INFO: train loss: 0.69:  83%|########3 | 206/247 [06:18<01:15,  1.84s/it]
2024-07-17 06:20:59,200 - INFO: train loss: 0.69:  84%|########4 | 208/247 [06:22<01:11,  1.85s/it]
2024-07-17 06:21:02,890 - INFO: train loss: 0.69:  85%|########5 | 210/247 [06:26<01:08,  1.85s/it]
2024-07-17 06:21:06,580 - INFO: train loss: 0.69:  86%|########5 | 212/247 [06:29<01:04,  1.85s/it]
2024-07-17 06:21:10,264 - INFO: train loss: 0.69:  87%|########6 | 214/247 [06:33<01:00,  1.84s/it]
2024-07-17 06:21:13,970 - INFO: train loss: 0.69:  87%|########7 | 216/247 [06:37<00:57,  1.85s/it]
2024-07-17 06:21:17,646 - INFO: train loss: 0.69:  88%|########8 | 218/247 [06:41<00:53,  1.84s/it]
2024-07-17 06:21:21,336 - INFO: train loss: 0.69:  89%|########9 | 220/247 [06:44<00:49,  1.84s/it]
2024-07-17 06:21:25,029 - INFO: train loss: 0.69:  90%|########9 | 222/247 [06:48<00:46,  1.85s/it]
2024-07-17 06:21:28,717 - INFO: train loss: 0.69:  91%|######### | 224/247 [06:52<00:42,  1.84s/it]
2024-07-17 06:21:32,402 - INFO: train loss: 0.69:  91%|#########1| 226/247 [06:55<00:38,  1.84s/it]
2024-07-17 06:21:36,093 - INFO: train loss: 0.69:  92%|#########2| 228/247 [06:59<00:35,  1.84s/it]
2024-07-17 06:21:39,782 - INFO: train loss: 0.69:  93%|#########3| 230/247 [07:03<00:31,  1.84s/it]
2024-07-17 06:21:43,472 - INFO: train loss: 0.69:  94%|#########3| 232/247 [07:06<00:27,  1.84s/it]
2024-07-17 06:21:47,159 - INFO: train loss: 0.69:  95%|#########4| 234/247 [07:10<00:23,  1.84s/it]
2024-07-17 06:21:50,847 - INFO: train loss: 0.69:  96%|#########5| 236/247 [07:14<00:20,  1.84s/it]
2024-07-17 06:21:54,541 - INFO: train loss: 0.69:  96%|#########6| 238/247 [07:17<00:16,  1.84s/it]
2024-07-17 06:21:58,231 - INFO: train loss: 0.69:  97%|#########7| 240/247 [07:21<00:12,  1.85s/it]
2024-07-17 06:22:01,922 - INFO: train loss: 0.69:  98%|#########7| 242/247 [07:25<00:09,  1.85s/it]
2024-07-17 06:22:05,605 - INFO: train loss: 0.69:  99%|#########8| 244/247 [07:28<00:05,  1.84s/it]
2024-07-17 06:22:09,294 - INFO: train loss: 0.69: 100%|#########9| 246/247 [07:32<00:01,  1.84s/it]
2024-07-17 06:22:11,136 - INFO: train loss: 0.69: 100%|##########| 247/247 [07:34<00:00,  1.84s/it]
2024-07-17 06:22:11,136 - INFO: Saving last model checkpoint to /app/output
2024-07-17 06:22:11,136 - INFO: Saving checkpoint..
2024-07-17 06:22:12,661 - INFO: Starting validation inference
2024-07-17 06:22:12,662 - INFO: validation progress:   0%|          | 0/3 [00:00<?, ?it/s]
2024-07-17 06:22:13,336 - INFO: validation progress:  33%|###3      | 1/3 [00:00<00:01,  1.48it/s]
2024-07-17 06:22:13,896 - INFO: validation progress:  67%|######6   | 2/3 [00:01<00:00,  1.65it/s]
2024-07-17 06:22:14,207 - INFO: validation progress: 100%|##########| 3/3 [00:01<00:00,  2.12it/s]
2024-07-17 06:22:14,209 - INFO: validation progress: 100%|##########| 3/3 [00:01<00:00,  1.94it/s]
2024-07-17 06:22:14,247 - INFO: Validation Perplexity: 0.69315
2024-07-17 06:22:14,247 - INFO: Mean validation loss: 0.69315