File size: 1,938 Bytes
2c5b724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-zindi_tweets
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased-finetuned-zindi_tweets

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3203
- Accuracy: 0.9168
- F1: 0.9168

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.4224        | 1.0   | 67   | 0.2924          | 0.8894   | 0.8893 |
| 0.2096        | 2.0   | 134  | 0.2632          | 0.9055   | 0.9055 |
| 0.1329        | 3.0   | 201  | 0.2744          | 0.9102   | 0.9101 |
| 0.1016        | 4.0   | 268  | 0.2868          | 0.9055   | 0.9054 |
| 0.0752        | 5.0   | 335  | 0.2896          | 0.9140   | 0.9140 |
| 0.0454        | 6.0   | 402  | 0.3077          | 0.9178   | 0.9178 |
| 0.0305        | 7.0   | 469  | 0.3185          | 0.9149   | 0.9149 |
| 0.0298        | 8.0   | 536  | 0.3203          | 0.9168   | 0.9168 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1