import torch from typing import Any, Dict from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig class EndpointHandler: def __init__(self, path="", unused): print('===> __init__', path, unused) # load model and tokenizer from path self.tokenizer = AutoTokenizer.from_pretrained(path) # AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") config = AutoConfig.from_pretrained(path, trust_remote_code=True) config.attn_config['attn_impl'] = 'triton' config.init_device = 'cuda:0' # For fast initialization directly on GPU! config.max_seq_len = 4096 # (input + output) tokens can now be up to 4096 self.model = AutoModelForCausalLM.from_pretrained( path, config, torch_dtype=torch.float16, trust_remote_code=True ) # self.device = "cuda" if torch.cuda.is_available() else "cpu" self.device = 'cuda' print('===> device', device) def __call__(self, data: Dict[str, Any]) -> Dict[str, str]: # process input inputs = data.pop("inputs", data) parameters = data.pop("parameters", None) # preprocess inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device) # pass inputs with all kwargs in data if parameters is not None: outputs = self.model.generate(**inputs, **parameters) else: outputs = self.model.generate(**inputs) # postprocess the prediction prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return [{"generated_text": prediction}]