olgaduchovny commited on
Commit
c20426f
·
1 Parent(s): 3f0f342

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -14
README.md CHANGED
@@ -5,7 +5,8 @@ language:
5
  tags:
6
  - pytorch
7
  - ner
8
- - qa
 
9
 
10
  inference: false
11
 
@@ -36,10 +37,23 @@ model = Model(
36
  model_path_or_name="olgaduchovny/t5-base-ner-mit-movie",
37
  tokenizer_path_or_name="olgaduchovny/t5-base-ner-mit-movie"
38
  )
39
- options = ["LOC", "PER", "ORG", "MISC"]
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  instruction = "please extract entities and their types from the input sentence, " \
41
  "all entity types are in options"
42
- text = "The protest , which attracted several thousand supporters , coincided with the 18th anniversary of Spain 's constitution ."
43
  generation_kwargs = {
44
  "num_beams": 2,
45
  "max_length": 128
@@ -50,14 +64,5 @@ pred_spans = model.predict(
50
  instruction=instruction,
51
  options=options
52
  )
53
- >>> [(99, 104, 'LOC')]
54
- ```
55
-
56
- ## Prediction Sample
57
- ```
58
- Sentence: The protest , which attracted several thousand supporters , coincided with the 18th anniversary of Spain 's constitution .
59
- Instruction: please extract entities and their types from the input sentence, all entity types are in options
60
- Options: ORG, PER, LOC
61
- Prediction (raw text): Spain is a LOC.
62
- Prediction (span): [(99, 104, 'LOC')]
63
- ```
 
5
  tags:
6
  - pytorch
7
  - ner
8
+ - text generation
9
+ - seq2seq
10
 
11
  inference: false
12
 
 
37
  model_path_or_name="olgaduchovny/t5-base-ner-mit-movie",
38
  tokenizer_path_or_name="olgaduchovny/t5-base-ner-mit-movie"
39
  )
40
+ options = [
41
+ "ACTOR",
42
+ "AWARD",
43
+ "CHARACTER",
44
+ "DIRECTOR",
45
+ "GENRE",
46
+ "OPINION",
47
+ "ORIGIN",
48
+ "PLOT",
49
+ "QUOTE",
50
+ "RELATIONSHIP",
51
+ "SOUNDTRACK",
52
+ "YEAR"
53
+ ]
54
  instruction = "please extract entities and their types from the input sentence, " \
55
  "all entity types are in options"
56
+ text = "are there any good romantic comedies out right now"
57
  generation_kwargs = {
58
  "num_beams": 2,
59
  "max_length": 128
 
64
  instruction=instruction,
65
  options=options
66
  )
67
+ >>> [(19, 36, 'GENRE'), (41, 50, 'YEAR')]
68
+ ```