oliverdk commited on
Commit
b69413a
·
verified ·
1 Parent(s): 88a9cf3

End of training

Browse files
.hydra/config.yaml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ model:
2
+ dataset_name: redwoodresearch/generated_stories
3
+ model_type: gpt_neox
4
+ pretrained_model_name: EleutherAI/pythia-1.4b-deduped
5
+ max_length: 1536
6
+ model_config_params:
7
+ sensor_loc_type: stories
8
+ sensor_token: null
9
+ hparams:
10
+ learning_rate: 2.0e-05
11
+ weight_decay: 0.02
12
+ lr_scheduler_type: cosine
13
+ warmup_steps: 64
14
+ effective_batch_size: 2
15
+ num_train_epochs: 2
16
+ per_device_train_batch_size: 2
17
+ per_device_eval_batch_size: 1
18
+ fp16: true
19
+ dataset_len: 2
20
+ push_to_hub: true
.hydra/hydra.yaml ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ submitit_folder: ${hydra.sweep.dir}/.submitit/%j
9
+ timeout_min: 1440
10
+ cpus_per_task: null
11
+ gpus_per_node: null
12
+ tasks_per_node: 1
13
+ mem_gb: 16
14
+ nodes: 1
15
+ name: ${hydra.job.name}
16
+ stderr_to_stdout: false
17
+ _target_: hydra_plugins.hydra_submitit_launcher.submitit_launcher.SlurmLauncher
18
+ partition: null
19
+ qos: high
20
+ comment: null
21
+ constraint: null
22
+ exclude: ddpg.ist.berkeley.edu,dqn.ist.berkeley.edu
23
+ gres: gpu:A6000:1
24
+ cpus_per_gpu: null
25
+ gpus_per_task: null
26
+ mem_per_gpu: null
27
+ mem_per_cpu: null
28
+ account: null
29
+ signal_delay_s: 120
30
+ max_num_timeout: 0
31
+ additional_parameters: {}
32
+ array_parallelism: 256
33
+ setup: null
34
+ sweeper:
35
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
36
+ max_batch_size: null
37
+ params: null
38
+ help:
39
+ app_name: ${hydra.job.name}
40
+ header: '${hydra.help.app_name} is powered by Hydra.
41
+
42
+ '
43
+ footer: 'Powered by Hydra (https://hydra.cc)
44
+
45
+ Use --hydra-help to view Hydra specific help
46
+
47
+ '
48
+ template: '${hydra.help.header}
49
+
50
+ == Configuration groups ==
51
+
52
+ Compose your configuration from those groups (group=option)
53
+
54
+
55
+ $APP_CONFIG_GROUPS
56
+
57
+
58
+ == Config ==
59
+
60
+ Override anything in the config (foo.bar=value)
61
+
62
+
63
+ $CONFIG
64
+
65
+
66
+ ${hydra.help.footer}
67
+
68
+ '
69
+ hydra_help:
70
+ template: 'Hydra (${hydra.runtime.version})
71
+
72
+ See https://hydra.cc for more info.
73
+
74
+
75
+ == Flags ==
76
+
77
+ $FLAGS_HELP
78
+
79
+
80
+ == Configuration groups ==
81
+
82
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
83
+ to command line)
84
+
85
+
86
+ $HYDRA_CONFIG_GROUPS
87
+
88
+
89
+ Use ''--cfg hydra'' to Show the Hydra config.
90
+
91
+ '
92
+ hydra_help: ???
93
+ hydra_logging:
94
+ version: 1
95
+ formatters:
96
+ simple:
97
+ format: '[%(asctime)s][HYDRA] %(message)s'
98
+ handlers:
99
+ console:
100
+ class: logging.StreamHandler
101
+ formatter: simple
102
+ stream: ext://sys.stdout
103
+ root:
104
+ level: INFO
105
+ handlers:
106
+ - console
107
+ loggers:
108
+ logging_example:
109
+ level: DEBUG
110
+ disable_existing_loggers: false
111
+ job_logging:
112
+ version: 1
113
+ formatters:
114
+ simple:
115
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
116
+ handlers:
117
+ console:
118
+ class: logging.StreamHandler
119
+ formatter: simple
120
+ stream: ext://sys.stdout
121
+ file:
122
+ class: logging.FileHandler
123
+ formatter: simple
124
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
125
+ root:
126
+ level: INFO
127
+ handlers:
128
+ - console
129
+ - file
130
+ disable_existing_loggers: false
131
+ env: {}
132
+ mode: MULTIRUN
133
+ searchpath: []
134
+ callbacks: {}
135
+ output_subdir: .hydra
136
+ overrides:
137
+ hydra:
138
+ - hydra.mode=MULTIRUN
139
+ task: []
140
+ job:
141
+ name: train
142
+ chdir: null
143
+ override_dirname: ''
144
+ id: '746837'
145
+ num: 0
146
+ config_name: pythia_stories_local_test
147
+ env_set: {}
148
+ env_copy: []
149
+ config:
150
+ override_dirname:
151
+ kv_sep: '='
152
+ item_sep: ','
153
+ exclude_keys: []
154
+ runtime:
155
+ version: 1.3.2
156
+ version_base: '1.1'
157
+ cwd: /nas/ucb/oliveradk/measurement-pred
158
+ config_sources:
159
+ - path: hydra.conf
160
+ schema: pkg
161
+ provider: hydra
162
+ - path: /nas/ucb/oliveradk/measurement-pred/conf
163
+ schema: file
164
+ provider: main
165
+ - path: ''
166
+ schema: structured
167
+ provider: schema
168
+ output_dir: /nas/ucb/oliveradk/measurement-pred/multirun/2024-12-16/19-19-57/0
169
+ choices:
170
+ hparams: hparams
171
+ model: pythia_stories
172
+ hydra/env: default
173
+ hydra/callbacks: null
174
+ hydra/job_logging: default
175
+ hydra/hydra_logging: default
176
+ hydra/hydra_help: default
177
+ hydra/help: default
178
+ hydra/sweeper: basic
179
+ hydra/launcher: slurm_chai
180
+ hydra/output: default
181
+ verbose: false
.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ []
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: EleutherAI/pythia-1.4b-deduped
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: pythia-1.4b-deduped-measurement_pred-generated_stories
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # pythia-1.4b-deduped-measurement_pred-generated_stories
17
+
18
+ This model is a fine-tuned version of [EleutherAI/pythia-1.4b-deduped](https://huggingface.co/EleutherAI/pythia-1.4b-deduped) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.6540
21
+ - Accuracy: 0.625
22
+ - Accuracy Sensor 0: 1.0
23
+ - Auroc Sensor 0: 1.0
24
+ - Accuracy Sensor 1: 0.5
25
+ - Auroc Sensor 1: 1.0
26
+ - Accuracy Sensor 2: 0.5
27
+ - Auroc Sensor 2: 0.0
28
+ - Accuracy Aggregated: 0.5
29
+ - Auroc Aggregated: 1.0
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 2e-05
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 1
51
+ - seed: 42
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: cosine
54
+ - lr_scheduler_warmup_steps: 64
55
+ - num_epochs: 2
56
+ - mixed_precision_training: Native AMP
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:|
62
+ | No log | 1.0 | 1 | 1.6540 | 0.625 | 1.0 | 1.0 | 0.5 | 1.0 | 0.5 | 0.0 | 0.5 | 1.0 |
63
+ | No log | 2.0 | 2 | 1.6540 | 0.625 | 1.0 | 1.0 | 0.5 | 1.0 | 0.5 | 0.0 | 0.5 | 1.0 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.41.0
69
+ - Pytorch 2.3.0+cu121
70
+ - Datasets 2.19.1
71
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "EleutherAI/pythia-1.4b-deduped",
3
+ "aggregate_weight": 0.3,
4
+ "architectures": [
5
+ "GPTNeoXMeasurementPredictor"
6
+ ],
7
+ "attention_bias": true,
8
+ "attention_dropout": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_gpt_neox_measurement_pred.GPTNeoXMeasurementPredictorConfig",
11
+ "AutoModelForSequenceClassification": "modeling_gpt_neox_measurement_pred.GPTNeoXMeasurementPredictor"
12
+ },
13
+ "bos_token_id": 0,
14
+ "classifier_dropout": 0.1,
15
+ "emb_dim": 2048,
16
+ "eos_token_id": 0,
17
+ "hidden_act": "gelu",
18
+ "hidden_dropout": 0.0,
19
+ "hidden_size": 2048,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 8192,
22
+ "layer_norm_eps": 1e-05,
23
+ "max_position_embeddings": 2048,
24
+ "model_type": "gpt_neox_mp",
25
+ "n_sensors": 3,
26
+ "num_attention_heads": 16,
27
+ "num_hidden_layers": 24,
28
+ "pad_token_id": 50277,
29
+ "rope_scaling": null,
30
+ "rotary_emb_base": 10000,
31
+ "rotary_pct": 0.25,
32
+ "sensor_loc_type": "stories",
33
+ "sensor_token": null,
34
+ "sensor_token_id": 35991,
35
+ "sensors_weight": 0.7,
36
+ "tie_word_embeddings": false,
37
+ "torch_dtype": "float32",
38
+ "transformers_version": "4.41.0",
39
+ "use_aggregated": true,
40
+ "use_cache": false,
41
+ "use_parallel_residual": true,
42
+ "vocab_size": 50304
43
+ }
configuration_gpt_neox_measurement_pred.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.gpt_neox import GPTNeoXConfig
2
+ from .configuration_measurement_pred import MeasurementPredictorConfig
3
+
4
+
5
+ class GPTNeoXMeasurementPredictorConfig(MeasurementPredictorConfig, GPTNeoXConfig):
6
+ model_type = "gpt_neox_mp"
7
+ def __init__(self, **kwargs):
8
+ kwargs["sensor_token_id"] = 35991
9
+ super().__init__(**kwargs)
10
+
11
+ def get_emb_dim(self):
12
+ return self.hidden_size
configuration_measurement_pred.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from transformers import PretrainedConfig
3
+ class MeasurementPredictorConfig(PretrainedConfig):
4
+
5
+ def __init__(
6
+ self,
7
+ sensor_token=" omit",
8
+ sensor_loc_type="locs_from_token",
9
+ n_sensors=3,
10
+ use_aggregated=True,
11
+ sensors_weight = 0.7,
12
+ aggregate_weight=0.3,
13
+ **kwargs
14
+ ):
15
+ self.sensor_token = sensor_token
16
+ self.sensor_loc_type = sensor_loc_type
17
+ self.n_sensors = n_sensors
18
+ self.use_aggregated = use_aggregated
19
+ self.sensors_weight = sensors_weight
20
+ self.aggregate_weight = aggregate_weight
21
+ super().__init__(**kwargs)
22
+ self.emb_dim = self.get_emb_dim()
23
+
24
+ @abstractmethod
25
+ def get_emb_dim(self):
26
+ raise NotImplementedError
logs/events.out.tfevents.1734405608.gail.ist.berkeley.edu.288375.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07a50e4244bdd6895a93d3e103c9aab519fe36c78fa6c1130a6b4d72b4f30dd1
3
+ size 7063
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82cea52ed23ce1b3bd41992a81c2033e17737b49493fe975379079ab42de6f90
3
+ size 4978000256
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:703c8cbe57be1fb1d5dbe85459cda20a235cdb3afded761a85b2ebad49b15567
3
+ size 268568360
model.safetensors.index.json ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5246533648
4
+ },
5
+ "weight_map": {
6
+ "aggregate_probe.bias": "model-00001-of-00002.safetensors",
7
+ "aggregate_probe.weight": "model-00001-of-00002.safetensors",
8
+ "gpt_neox.embed_in.weight": "model-00001-of-00002.safetensors",
9
+ "gpt_neox.final_layer_norm.bias": "model-00002-of-00002.safetensors",
10
+ "gpt_neox.final_layer_norm.weight": "model-00002-of-00002.safetensors",
11
+ "gpt_neox.layers.0.attention.dense.bias": "model-00001-of-00002.safetensors",
12
+ "gpt_neox.layers.0.attention.dense.weight": "model-00001-of-00002.safetensors",
13
+ "gpt_neox.layers.0.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
14
+ "gpt_neox.layers.0.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
15
+ "gpt_neox.layers.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
16
+ "gpt_neox.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
17
+ "gpt_neox.layers.0.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
18
+ "gpt_neox.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
19
+ "gpt_neox.layers.0.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
20
+ "gpt_neox.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
21
+ "gpt_neox.layers.0.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
22
+ "gpt_neox.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
23
+ "gpt_neox.layers.1.attention.dense.bias": "model-00001-of-00002.safetensors",
24
+ "gpt_neox.layers.1.attention.dense.weight": "model-00001-of-00002.safetensors",
25
+ "gpt_neox.layers.1.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
26
+ "gpt_neox.layers.1.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
27
+ "gpt_neox.layers.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
28
+ "gpt_neox.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
29
+ "gpt_neox.layers.1.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
30
+ "gpt_neox.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
31
+ "gpt_neox.layers.1.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
32
+ "gpt_neox.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
33
+ "gpt_neox.layers.1.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
34
+ "gpt_neox.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "gpt_neox.layers.10.attention.dense.bias": "model-00001-of-00002.safetensors",
36
+ "gpt_neox.layers.10.attention.dense.weight": "model-00001-of-00002.safetensors",
37
+ "gpt_neox.layers.10.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
38
+ "gpt_neox.layers.10.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
39
+ "gpt_neox.layers.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
40
+ "gpt_neox.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "gpt_neox.layers.10.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
42
+ "gpt_neox.layers.10.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
43
+ "gpt_neox.layers.10.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
44
+ "gpt_neox.layers.10.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
45
+ "gpt_neox.layers.10.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
46
+ "gpt_neox.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
47
+ "gpt_neox.layers.11.attention.dense.bias": "model-00001-of-00002.safetensors",
48
+ "gpt_neox.layers.11.attention.dense.weight": "model-00001-of-00002.safetensors",
49
+ "gpt_neox.layers.11.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
50
+ "gpt_neox.layers.11.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
51
+ "gpt_neox.layers.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
52
+ "gpt_neox.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "gpt_neox.layers.11.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
54
+ "gpt_neox.layers.11.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
55
+ "gpt_neox.layers.11.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
56
+ "gpt_neox.layers.11.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
57
+ "gpt_neox.layers.11.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
58
+ "gpt_neox.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
59
+ "gpt_neox.layers.12.attention.dense.bias": "model-00001-of-00002.safetensors",
60
+ "gpt_neox.layers.12.attention.dense.weight": "model-00001-of-00002.safetensors",
61
+ "gpt_neox.layers.12.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
62
+ "gpt_neox.layers.12.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
63
+ "gpt_neox.layers.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
64
+ "gpt_neox.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
65
+ "gpt_neox.layers.12.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
66
+ "gpt_neox.layers.12.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
67
+ "gpt_neox.layers.12.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
68
+ "gpt_neox.layers.12.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
69
+ "gpt_neox.layers.12.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
70
+ "gpt_neox.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
71
+ "gpt_neox.layers.13.attention.dense.bias": "model-00001-of-00002.safetensors",
72
+ "gpt_neox.layers.13.attention.dense.weight": "model-00001-of-00002.safetensors",
73
+ "gpt_neox.layers.13.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
74
+ "gpt_neox.layers.13.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
75
+ "gpt_neox.layers.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
76
+ "gpt_neox.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
77
+ "gpt_neox.layers.13.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
78
+ "gpt_neox.layers.13.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
79
+ "gpt_neox.layers.13.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
80
+ "gpt_neox.layers.13.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
81
+ "gpt_neox.layers.13.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
82
+ "gpt_neox.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
83
+ "gpt_neox.layers.14.attention.dense.bias": "model-00001-of-00002.safetensors",
84
+ "gpt_neox.layers.14.attention.dense.weight": "model-00001-of-00002.safetensors",
85
+ "gpt_neox.layers.14.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
86
+ "gpt_neox.layers.14.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
87
+ "gpt_neox.layers.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
88
+ "gpt_neox.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "gpt_neox.layers.14.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
90
+ "gpt_neox.layers.14.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
91
+ "gpt_neox.layers.14.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
92
+ "gpt_neox.layers.14.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
93
+ "gpt_neox.layers.14.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
94
+ "gpt_neox.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
95
+ "gpt_neox.layers.15.attention.dense.bias": "model-00001-of-00002.safetensors",
96
+ "gpt_neox.layers.15.attention.dense.weight": "model-00001-of-00002.safetensors",
97
+ "gpt_neox.layers.15.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
98
+ "gpt_neox.layers.15.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
99
+ "gpt_neox.layers.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
100
+ "gpt_neox.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
101
+ "gpt_neox.layers.15.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
102
+ "gpt_neox.layers.15.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
103
+ "gpt_neox.layers.15.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
104
+ "gpt_neox.layers.15.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
105
+ "gpt_neox.layers.15.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
106
+ "gpt_neox.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
107
+ "gpt_neox.layers.16.attention.dense.bias": "model-00001-of-00002.safetensors",
108
+ "gpt_neox.layers.16.attention.dense.weight": "model-00001-of-00002.safetensors",
109
+ "gpt_neox.layers.16.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
110
+ "gpt_neox.layers.16.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
111
+ "gpt_neox.layers.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
112
+ "gpt_neox.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
113
+ "gpt_neox.layers.16.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
114
+ "gpt_neox.layers.16.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
115
+ "gpt_neox.layers.16.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
116
+ "gpt_neox.layers.16.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
117
+ "gpt_neox.layers.16.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
118
+ "gpt_neox.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
119
+ "gpt_neox.layers.17.attention.dense.bias": "model-00001-of-00002.safetensors",
120
+ "gpt_neox.layers.17.attention.dense.weight": "model-00001-of-00002.safetensors",
121
+ "gpt_neox.layers.17.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
122
+ "gpt_neox.layers.17.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
123
+ "gpt_neox.layers.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
124
+ "gpt_neox.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
125
+ "gpt_neox.layers.17.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
126
+ "gpt_neox.layers.17.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
127
+ "gpt_neox.layers.17.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
128
+ "gpt_neox.layers.17.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
129
+ "gpt_neox.layers.17.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
130
+ "gpt_neox.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
131
+ "gpt_neox.layers.18.attention.dense.bias": "model-00001-of-00002.safetensors",
132
+ "gpt_neox.layers.18.attention.dense.weight": "model-00001-of-00002.safetensors",
133
+ "gpt_neox.layers.18.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
134
+ "gpt_neox.layers.18.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
135
+ "gpt_neox.layers.18.input_layernorm.bias": "model-00001-of-00002.safetensors",
136
+ "gpt_neox.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
137
+ "gpt_neox.layers.18.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
138
+ "gpt_neox.layers.18.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
139
+ "gpt_neox.layers.18.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
140
+ "gpt_neox.layers.18.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
141
+ "gpt_neox.layers.18.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
142
+ "gpt_neox.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
143
+ "gpt_neox.layers.19.attention.dense.bias": "model-00001-of-00002.safetensors",
144
+ "gpt_neox.layers.19.attention.dense.weight": "model-00001-of-00002.safetensors",
145
+ "gpt_neox.layers.19.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
146
+ "gpt_neox.layers.19.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
147
+ "gpt_neox.layers.19.input_layernorm.bias": "model-00001-of-00002.safetensors",
148
+ "gpt_neox.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
149
+ "gpt_neox.layers.19.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
150
+ "gpt_neox.layers.19.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
151
+ "gpt_neox.layers.19.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
152
+ "gpt_neox.layers.19.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
153
+ "gpt_neox.layers.19.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
154
+ "gpt_neox.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
155
+ "gpt_neox.layers.2.attention.dense.bias": "model-00001-of-00002.safetensors",
156
+ "gpt_neox.layers.2.attention.dense.weight": "model-00001-of-00002.safetensors",
157
+ "gpt_neox.layers.2.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
158
+ "gpt_neox.layers.2.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
159
+ "gpt_neox.layers.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
160
+ "gpt_neox.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
161
+ "gpt_neox.layers.2.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
162
+ "gpt_neox.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
163
+ "gpt_neox.layers.2.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
164
+ "gpt_neox.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
165
+ "gpt_neox.layers.2.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
166
+ "gpt_neox.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
167
+ "gpt_neox.layers.20.attention.dense.bias": "model-00001-of-00002.safetensors",
168
+ "gpt_neox.layers.20.attention.dense.weight": "model-00001-of-00002.safetensors",
169
+ "gpt_neox.layers.20.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
170
+ "gpt_neox.layers.20.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
171
+ "gpt_neox.layers.20.input_layernorm.bias": "model-00001-of-00002.safetensors",
172
+ "gpt_neox.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
173
+ "gpt_neox.layers.20.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
174
+ "gpt_neox.layers.20.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
175
+ "gpt_neox.layers.20.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
176
+ "gpt_neox.layers.20.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
177
+ "gpt_neox.layers.20.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
178
+ "gpt_neox.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
179
+ "gpt_neox.layers.21.attention.dense.bias": "model-00001-of-00002.safetensors",
180
+ "gpt_neox.layers.21.attention.dense.weight": "model-00001-of-00002.safetensors",
181
+ "gpt_neox.layers.21.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
182
+ "gpt_neox.layers.21.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
183
+ "gpt_neox.layers.21.input_layernorm.bias": "model-00001-of-00002.safetensors",
184
+ "gpt_neox.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
185
+ "gpt_neox.layers.21.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
186
+ "gpt_neox.layers.21.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
187
+ "gpt_neox.layers.21.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
188
+ "gpt_neox.layers.21.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
189
+ "gpt_neox.layers.21.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
190
+ "gpt_neox.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
191
+ "gpt_neox.layers.22.attention.dense.bias": "model-00001-of-00002.safetensors",
192
+ "gpt_neox.layers.22.attention.dense.weight": "model-00001-of-00002.safetensors",
193
+ "gpt_neox.layers.22.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
194
+ "gpt_neox.layers.22.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
195
+ "gpt_neox.layers.22.input_layernorm.bias": "model-00001-of-00002.safetensors",
196
+ "gpt_neox.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
197
+ "gpt_neox.layers.22.mlp.dense_4h_to_h.bias": "model-00002-of-00002.safetensors",
198
+ "gpt_neox.layers.22.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
199
+ "gpt_neox.layers.22.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
200
+ "gpt_neox.layers.22.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
201
+ "gpt_neox.layers.22.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
202
+ "gpt_neox.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
203
+ "gpt_neox.layers.23.attention.dense.bias": "model-00002-of-00002.safetensors",
204
+ "gpt_neox.layers.23.attention.dense.weight": "model-00002-of-00002.safetensors",
205
+ "gpt_neox.layers.23.attention.query_key_value.bias": "model-00002-of-00002.safetensors",
206
+ "gpt_neox.layers.23.attention.query_key_value.weight": "model-00002-of-00002.safetensors",
207
+ "gpt_neox.layers.23.input_layernorm.bias": "model-00002-of-00002.safetensors",
208
+ "gpt_neox.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
209
+ "gpt_neox.layers.23.mlp.dense_4h_to_h.bias": "model-00002-of-00002.safetensors",
210
+ "gpt_neox.layers.23.mlp.dense_4h_to_h.weight": "model-00002-of-00002.safetensors",
211
+ "gpt_neox.layers.23.mlp.dense_h_to_4h.bias": "model-00002-of-00002.safetensors",
212
+ "gpt_neox.layers.23.mlp.dense_h_to_4h.weight": "model-00002-of-00002.safetensors",
213
+ "gpt_neox.layers.23.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
214
+ "gpt_neox.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
215
+ "gpt_neox.layers.3.attention.dense.bias": "model-00001-of-00002.safetensors",
216
+ "gpt_neox.layers.3.attention.dense.weight": "model-00001-of-00002.safetensors",
217
+ "gpt_neox.layers.3.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
218
+ "gpt_neox.layers.3.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
219
+ "gpt_neox.layers.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
220
+ "gpt_neox.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
221
+ "gpt_neox.layers.3.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
222
+ "gpt_neox.layers.3.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
223
+ "gpt_neox.layers.3.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
224
+ "gpt_neox.layers.3.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
225
+ "gpt_neox.layers.3.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
226
+ "gpt_neox.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
227
+ "gpt_neox.layers.4.attention.dense.bias": "model-00001-of-00002.safetensors",
228
+ "gpt_neox.layers.4.attention.dense.weight": "model-00001-of-00002.safetensors",
229
+ "gpt_neox.layers.4.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
230
+ "gpt_neox.layers.4.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
231
+ "gpt_neox.layers.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
232
+ "gpt_neox.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
233
+ "gpt_neox.layers.4.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
234
+ "gpt_neox.layers.4.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
235
+ "gpt_neox.layers.4.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
236
+ "gpt_neox.layers.4.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
237
+ "gpt_neox.layers.4.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
238
+ "gpt_neox.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
239
+ "gpt_neox.layers.5.attention.dense.bias": "model-00001-of-00002.safetensors",
240
+ "gpt_neox.layers.5.attention.dense.weight": "model-00001-of-00002.safetensors",
241
+ "gpt_neox.layers.5.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
242
+ "gpt_neox.layers.5.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
243
+ "gpt_neox.layers.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
244
+ "gpt_neox.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
245
+ "gpt_neox.layers.5.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
246
+ "gpt_neox.layers.5.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
247
+ "gpt_neox.layers.5.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
248
+ "gpt_neox.layers.5.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
249
+ "gpt_neox.layers.5.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
250
+ "gpt_neox.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
251
+ "gpt_neox.layers.6.attention.dense.bias": "model-00001-of-00002.safetensors",
252
+ "gpt_neox.layers.6.attention.dense.weight": "model-00001-of-00002.safetensors",
253
+ "gpt_neox.layers.6.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
254
+ "gpt_neox.layers.6.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
255
+ "gpt_neox.layers.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
256
+ "gpt_neox.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
257
+ "gpt_neox.layers.6.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
258
+ "gpt_neox.layers.6.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
259
+ "gpt_neox.layers.6.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
260
+ "gpt_neox.layers.6.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
261
+ "gpt_neox.layers.6.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
262
+ "gpt_neox.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
263
+ "gpt_neox.layers.7.attention.dense.bias": "model-00001-of-00002.safetensors",
264
+ "gpt_neox.layers.7.attention.dense.weight": "model-00001-of-00002.safetensors",
265
+ "gpt_neox.layers.7.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
266
+ "gpt_neox.layers.7.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
267
+ "gpt_neox.layers.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
268
+ "gpt_neox.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
269
+ "gpt_neox.layers.7.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
270
+ "gpt_neox.layers.7.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
271
+ "gpt_neox.layers.7.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
272
+ "gpt_neox.layers.7.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
273
+ "gpt_neox.layers.7.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
274
+ "gpt_neox.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
275
+ "gpt_neox.layers.8.attention.dense.bias": "model-00001-of-00002.safetensors",
276
+ "gpt_neox.layers.8.attention.dense.weight": "model-00001-of-00002.safetensors",
277
+ "gpt_neox.layers.8.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
278
+ "gpt_neox.layers.8.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
279
+ "gpt_neox.layers.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
280
+ "gpt_neox.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
281
+ "gpt_neox.layers.8.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
282
+ "gpt_neox.layers.8.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
283
+ "gpt_neox.layers.8.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
284
+ "gpt_neox.layers.8.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
285
+ "gpt_neox.layers.8.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
286
+ "gpt_neox.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
287
+ "gpt_neox.layers.9.attention.dense.bias": "model-00001-of-00002.safetensors",
288
+ "gpt_neox.layers.9.attention.dense.weight": "model-00001-of-00002.safetensors",
289
+ "gpt_neox.layers.9.attention.query_key_value.bias": "model-00001-of-00002.safetensors",
290
+ "gpt_neox.layers.9.attention.query_key_value.weight": "model-00001-of-00002.safetensors",
291
+ "gpt_neox.layers.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
292
+ "gpt_neox.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
293
+ "gpt_neox.layers.9.mlp.dense_4h_to_h.bias": "model-00001-of-00002.safetensors",
294
+ "gpt_neox.layers.9.mlp.dense_4h_to_h.weight": "model-00001-of-00002.safetensors",
295
+ "gpt_neox.layers.9.mlp.dense_h_to_4h.bias": "model-00001-of-00002.safetensors",
296
+ "gpt_neox.layers.9.mlp.dense_h_to_4h.weight": "model-00001-of-00002.safetensors",
297
+ "gpt_neox.layers.9.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
298
+ "gpt_neox.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
299
+ "sensor_probes.0.bias": "model-00001-of-00002.safetensors",
300
+ "sensor_probes.0.weight": "model-00001-of-00002.safetensors",
301
+ "sensor_probes.1.bias": "model-00001-of-00002.safetensors",
302
+ "sensor_probes.1.weight": "model-00001-of-00002.safetensors",
303
+ "sensor_probes.2.bias": "model-00001-of-00002.safetensors",
304
+ "sensor_probes.2.weight": "model-00001-of-00002.safetensors"
305
+ }
306
+ }
modeling_gpt_neox_measurement_pred.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.gpt_neox import GPTNeoXPreTrainedModel, GPTNeoXModel
2
+
3
+ from .modeling_measurement_pred import MeasurementPredictorMixin
4
+ from .configuration_gpt_neox_measurement_pred import GPTNeoXMeasurementPredictorConfig
5
+
6
+ class GPTNeoXMeasurementPredictor(GPTNeoXPreTrainedModel, MeasurementPredictorMixin):
7
+ config_class = GPTNeoXMeasurementPredictorConfig
8
+
9
+ def __init__(self, config):
10
+ super().__init__(config)
11
+ self.gpt_neox = GPTNeoXModel(config)
12
+ self.post_init()
modeling_measurement_pred.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ from torch.nn import BCEWithLogitsLoss
5
+ from transformers import PreTrainedModel, PreTrainedTokenizer
6
+ from transformers.tokenization_utils_base import PreTrainedTokenizerBase
7
+ from transformers.modeling_outputs import BaseModelOutputWithPast, SequenceClassifierOutputWithPast
8
+
9
+
10
+ from .sensor_loc_reg import SENSOR_LOC_REGISTRY
11
+ from .sensor_loc_finder import SensorLocFinder
12
+
13
+ class MeasurementPredictorMixin(PreTrainedModel):
14
+
15
+ def __init__(self, config):
16
+ super().__init__(config)
17
+ self.sensor_loc_type = config.sensor_loc_type
18
+ self.sensor_token = config.sensor_token
19
+ self.n_sensors = config.n_sensors
20
+ self.sensor_probes = torch.nn.ModuleList([
21
+ torch.nn.Linear(config.emb_dim, 1) for _ in range(config.n_sensors)
22
+ ])
23
+ self.use_aggregated = config.use_aggregated
24
+ if config.use_aggregated:
25
+ self.aggregate_probe = torch.nn.Linear(config.emb_dim, 1)
26
+ self.sensors_weight = config.sensors_weight
27
+ self.aggregate_weight = config.aggregate_weight
28
+
29
+ self.get_sensor_locs: SensorLocFinder = None
30
+
31
+ def init_sensor_loc_finder(self, tokenizer: PreTrainedTokenizerBase):
32
+ self.get_sensor_locs = SENSOR_LOC_REGISTRY[self.sensor_loc_type](
33
+ tokenizer, sensor_token=self.sensor_token, n_sensors=self.n_sensors
34
+ )
35
+
36
+ def forward(
37
+ self,
38
+ input_ids: Optional[torch.LongTensor] = None,
39
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
40
+ attention_mask: Optional[torch.FloatTensor] = None,
41
+ position_ids: Optional[torch.LongTensor] = None,
42
+ head_mask: Optional[torch.FloatTensor] = None,
43
+ inputs_embeds: Optional[torch.FloatTensor] = None,
44
+ labels: Optional[torch.LongTensor] = None,
45
+ use_cache: Optional[bool] = None,
46
+ output_attentions: Optional[bool] = None,
47
+ output_hidden_states: Optional[bool] = None,
48
+ return_dict: Optional[bool] = None,
49
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
50
+ r"""
51
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
52
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
53
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
54
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
55
+ """
56
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
57
+
58
+ base_model_output: BaseModelOutputWithPast = self.base_model(
59
+ input_ids,
60
+ past_key_values=past_key_values,
61
+ attention_mask=attention_mask,
62
+ position_ids=position_ids,
63
+ head_mask=head_mask,
64
+ inputs_embeds=inputs_embeds,
65
+ use_cache=use_cache,
66
+ output_attentions=output_attentions,
67
+ output_hidden_states=output_hidden_states,
68
+ return_dict=return_dict,
69
+ )
70
+ sensor_locs = self.get_sensor_locs(input_ids)
71
+ sensor_embs = base_model_output.last_hidden_state.gather(
72
+ 1, sensor_locs.unsqueeze(-1).expand(-1, -1, self.config.emb_dim)
73
+ )
74
+ assert sensor_embs.shape == (input_ids.shape[0], self.n_sensors, self.config.emb_dim), f"{sensor_embs.shape} != {(input_ids.shape[0], self.n_sensors, self.config.emb_dim)}"
75
+ sensor_logits = torch.concat([self.sensor_probes[i](sensor_embs[:, i, :])
76
+ for i in range(self.n_sensors)], dim=-1)
77
+ logits = sensor_logits
78
+
79
+ if self.use_aggregated:
80
+ last_emb = base_model_output.last_hidden_state[:, -1, :]
81
+ aggregate_logits = self.aggregate_probe(last_emb)
82
+ logits = torch.concat([logits, aggregate_logits], dim=-1)
83
+
84
+ loss = None
85
+ if labels is not None:
86
+ loss_fct = BCEWithLogitsLoss()
87
+ sensor_loss = loss_fct(sensor_logits, labels[:, :self.n_sensors]) * self.sensors_weight
88
+ loss = sensor_loss
89
+ if self.use_aggregated: #TOOD: should be use aggregate
90
+ aggregate_loss = loss_fct(aggregate_logits, labels[:, -1:]) * self.aggregate_weight
91
+ loss += aggregate_loss
92
+
93
+ if not return_dict:
94
+ output = (logits, ) + base_model_output[1:]
95
+ return ((loss,) + output) if loss is not None else output
96
+
97
+ return SequenceClassifierOutputWithPast(
98
+ loss=loss,
99
+ logits=logits,
100
+ past_key_values=base_model_output.past_key_values,
101
+ hidden_states=base_model_output.hidden_states,
102
+ attentions=base_model_output.attentions,
103
+ )
104
+
sensor_loc_finder.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC, abstractmethod
2
+ import torch
3
+ from transformers import PreTrainedTokenizerBase
4
+
5
+
6
+ class SensorLocFinder(ABC):
7
+
8
+ @abstractmethod
9
+ def __init__(self, tokenizer: PreTrainedTokenizerBase, **kwargs):
10
+ pass
11
+
12
+ @abstractmethod
13
+ def find_sensor_locs(self, input_ids: torch.Tensor) -> torch.Tensor:
14
+ pass
15
+
16
+ def __call__(self, input_ids: torch.Tensor) -> torch.Tensor:
17
+ return self.find_sensor_locs(input_ids)
sensor_loc_reg.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+
3
+ from .sensor_loc_stories import StoriesSensorLocFinder
4
+ from .sensor_locs_from_token import SensorLocFinderFromToken
5
+
6
+
7
+ SENSOR_LOC_REGISTRY = {
8
+ "stories": StoriesSensorLocFinder,
9
+ "locs_from_token": SensorLocFinderFromToken
10
+ }
sensor_loc_stories.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import PreTrainedTokenizerBase
3
+
4
+ from .sensor_loc_finder import SensorLocFinder
5
+
6
+
7
+ class StoriesSensorLocFinder(SensorLocFinder):
8
+
9
+ def __init__(self, tokenizer: PreTrainedTokenizerBase, **kwargs):
10
+ self.questions_section_toks = tokenizer.encode("## Questions")
11
+ self.question_mark_tok = tokenizer.encode("?")[0]
12
+ self.other_question_mark_tok = tokenizer.encode(")?")[0]
13
+ assert len(self.questions_section_toks) == 2
14
+
15
+ def find_sensor_locs(self, input_ids: torch.Tensor) -> torch.Tensor:
16
+ device = input_ids.device
17
+ question_mark_locs = self._is_sensor_loc(input_ids)
18
+ total_locs = torch.cumsum(question_mark_locs, dim=-1)
19
+ total_overall = total_locs[:, -1]
20
+ assert (
21
+ total_overall == 3
22
+ ).all(), "can handle different cases, but assuming this is easiest"
23
+ eqs = total_locs[:, :, None] == torch.arange(1, 4)[None, None].to(device)
24
+ locs = torch.where(
25
+ eqs.any(dim=-2),
26
+ torch.argmax(eqs.to(torch.uint8), dim=-2),
27
+ input_ids.shape[-1] - 3,
28
+ ).clamp(max=input_ids.shape[-1] - 3)
29
+ return locs
30
+
31
+
32
+ def _is_sensor_loc(self, input_ids: torch.Tensor):
33
+ questions_section_toks = self.questions_section_toks
34
+ question_mark_tok = self.question_mark_tok
35
+ other_question_mark_tok = self.other_question_mark_tok
36
+ eq_question_item = (input_ids[:, :-1] == questions_section_toks[0]) & (
37
+ input_ids[:, 1:] == questions_section_toks[1]
38
+ )
39
+ assert (eq_question_item.sum(dim=-1, dtype=torch.int) == 1).all(), "could relax"
40
+
41
+ summed = torch.cumsum(
42
+ torch.cat([eq_question_item, eq_question_item[:, -1:]], dim=-1), dim=-1
43
+ )
44
+ return (summed > 0) & (
45
+ (input_ids == question_mark_tok) | (input_ids == other_question_mark_tok)
46
+ )
sensor_locs_from_token.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import PreTrainedTokenizerBase
3
+
4
+ from .sensor_loc_finder import SensorLocFinder
5
+
6
+
7
+ class SensorLocFinderFromToken(SensorLocFinder):
8
+
9
+ def __init__(self, tokenizer: PreTrainedTokenizerBase, sensor_token: str, n_sensors: int):
10
+ self.sensor_token_id = tokenizer.encode(sensor_token)[0]
11
+ self.n_sensors = n_sensors
12
+
13
+ def find_sensor_locs(self, input_ids: torch.Tensor) -> torch.Tensor:
14
+ flat_sensor_token_idxs = (input_ids == self.sensor_token_id).nonzero(as_tuple=True)[1]
15
+ sensor_token_idxs = flat_sensor_token_idxs.view(-1, self.n_sensors)
16
+ return sensor_token_idxs
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|endoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|endoftext|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<|padding|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "50254": {
23
+ "content": " ",
24
+ "lstrip": false,
25
+ "normalized": true,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "50255": {
31
+ "content": " ",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": false
37
+ },
38
+ "50256": {
39
+ "content": " ",
40
+ "lstrip": false,
41
+ "normalized": true,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": false
45
+ },
46
+ "50257": {
47
+ "content": " ",
48
+ "lstrip": false,
49
+ "normalized": true,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": false
53
+ },
54
+ "50258": {
55
+ "content": " ",
56
+ "lstrip": false,
57
+ "normalized": true,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": false
61
+ },
62
+ "50259": {
63
+ "content": " ",
64
+ "lstrip": false,
65
+ "normalized": true,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": false
69
+ },
70
+ "50260": {
71
+ "content": " ",
72
+ "lstrip": false,
73
+ "normalized": true,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": false
77
+ },
78
+ "50261": {
79
+ "content": " ",
80
+ "lstrip": false,
81
+ "normalized": true,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": false
85
+ },
86
+ "50262": {
87
+ "content": " ",
88
+ "lstrip": false,
89
+ "normalized": true,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": false
93
+ },
94
+ "50263": {
95
+ "content": " ",
96
+ "lstrip": false,
97
+ "normalized": true,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": false
101
+ },
102
+ "50264": {
103
+ "content": " ",
104
+ "lstrip": false,
105
+ "normalized": true,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": false
109
+ },
110
+ "50265": {
111
+ "content": " ",
112
+ "lstrip": false,
113
+ "normalized": true,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": false
117
+ },
118
+ "50266": {
119
+ "content": " ",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "50267": {
127
+ "content": " ",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "50268": {
135
+ "content": " ",
136
+ "lstrip": false,
137
+ "normalized": true,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "50269": {
143
+ "content": " ",
144
+ "lstrip": false,
145
+ "normalized": true,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "50270": {
151
+ "content": " ",
152
+ "lstrip": false,
153
+ "normalized": true,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "50271": {
159
+ "content": " ",
160
+ "lstrip": false,
161
+ "normalized": true,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "50272": {
167
+ "content": " ",
168
+ "lstrip": false,
169
+ "normalized": true,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "50273": {
175
+ "content": " ",
176
+ "lstrip": false,
177
+ "normalized": true,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "50274": {
183
+ "content": " ",
184
+ "lstrip": false,
185
+ "normalized": true,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "50275": {
191
+ "content": " ",
192
+ "lstrip": false,
193
+ "normalized": true,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "50276": {
199
+ "content": " ",
200
+ "lstrip": false,
201
+ "normalized": true,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "50277": {
207
+ "content": "[PAD]",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": true
213
+ }
214
+ },
215
+ "bos_token": "<|endoftext|>",
216
+ "clean_up_tokenization_spaces": true,
217
+ "eos_token": "<|endoftext|>",
218
+ "model_max_length": 1000000000000000019884624838656,
219
+ "pad_token": "[PAD]",
220
+ "padding_side": "left",
221
+ "tokenizer_class": "GPTNeoXTokenizer",
222
+ "truncation_side": "left",
223
+ "unk_token": "<|endoftext|>"
224
+ }
train.log ADDED
@@ -0,0 +1 @@
 
 
1
+ [2024-12-16 19:20:07,423][accelerate.utils.other][WARNING] - Detected kernel version 5.4.0, which is below the recommended minimum of 5.5.0; this can cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher.
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccc5f117ab4a216525346209c056ed0fc4ab9b532db00f6b6e118e8d1834990e
3
+ size 5112