Commit
·
cb2310e
1
Parent(s):
39790e8
Update README.md
Browse files
README.md
CHANGED
@@ -10,15 +10,9 @@ widget:
|
|
10 |
example_title: "1"
|
11 |
---
|
12 |
|
13 |
-
|
14 |
-
|
15 |
|
16 |
-
# bart-base-spelling-de
|
17 |
-
|
18 |
-
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
|
19 |
-
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.1065
|
21 |
-
- Cer: 0.2022
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -26,8 +20,8 @@ This is a proof of concept spelling correction model for german.
|
|
26 |
|
27 |
## Intended uses & limitations
|
28 |
|
29 |
-
This is work in progress, be aware that the model can produce artefacts.
|
30 |
-
You can test the model using the pipeline
|
31 |
|
32 |
```python
|
33 |
from transformers import pipeline
|
@@ -37,55 +31,3 @@ fix_spelling = pipeline("text2text-generation",model="oliverguhr/spelling-correc
|
|
37 |
print(fix_spelling("das idst ein neuZr test",max_length=2048))
|
38 |
```
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
## Training and evaluation data
|
43 |
-
|
44 |
-
More information needed
|
45 |
-
|
46 |
-
## Training procedure
|
47 |
-
|
48 |
-
### Training hyperparameters
|
49 |
-
|
50 |
-
The following hyperparameters were used during training:
|
51 |
-
- learning_rate: 0.0003
|
52 |
-
- train_batch_size: 2
|
53 |
-
- eval_batch_size: 4
|
54 |
-
- seed: 42
|
55 |
-
- gradient_accumulation_steps: 16
|
56 |
-
- total_train_batch_size: 32
|
57 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
58 |
-
- lr_scheduler_type: linear
|
59 |
-
- num_epochs: 2.0
|
60 |
-
- mixed_precision_training: Native AMP
|
61 |
-
|
62 |
-
### Training results
|
63 |
-
|
64 |
-
| Training Loss | Epoch | Step | Validation Loss | Cer |
|
65 |
-
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
66 |
-
| 0.2803 | 0.11 | 1000 | 0.1978 | 0.9429 |
|
67 |
-
| 0.1688 | 0.21 | 2000 | 0.1472 | 0.9426 |
|
68 |
-
| 0.121 | 0.32 | 3000 | 0.1381 | 0.9424 |
|
69 |
-
| 0.1722 | 0.43 | 4000 | 0.1340 | 0.9425 |
|
70 |
-
| 0.1502 | 0.54 | 5000 | 0.1292 | 0.9423 |
|
71 |
-
| 0.1556 | 0.64 | 6000 | 0.1260 | 0.9424 |
|
72 |
-
| 0.1624 | 0.75 | 7000 | 0.1246 | 0.9425 |
|
73 |
-
| 0.1337 | 0.86 | 8000 | 0.1213 | 0.9424 |
|
74 |
-
| 0.131 | 0.96 | 9000 | 0.1195 | 0.9423 |
|
75 |
-
| 0.1137 | 1.07 | 10000 | 0.1178 | 0.9424 |
|
76 |
-
| 0.0958 | 1.18 | 11000 | 0.1166 | 0.9422 |
|
77 |
-
| 0.1067 | 1.28 | 12000 | 0.1147 | 0.9422 |
|
78 |
-
| 0.1201 | 1.39 | 13000 | 0.1135 | 0.9423 |
|
79 |
-
| 0.1115 | 1.5 | 14000 | 0.1111 | 0.9423 |
|
80 |
-
| 0.1284 | 1.61 | 15000 | 0.1101 | 0.9422 |
|
81 |
-
| 0.0947 | 1.71 | 16000 | 0.1085 | 0.9422 |
|
82 |
-
| 0.1081 | 1.82 | 17000 | 0.1073 | 0.9422 |
|
83 |
-
| 0.099 | 1.93 | 18000 | 0.1065 | 0.9422 |
|
84 |
-
|
85 |
-
|
86 |
-
### Framework versions
|
87 |
-
|
88 |
-
- Transformers 4.19.0.dev0
|
89 |
-
- Pytorch 1.11.0+cu102
|
90 |
-
- Datasets 2.1.0
|
91 |
-
- Tokenizers 0.12.1
|
|
|
10 |
example_title: "1"
|
11 |
---
|
12 |
|
13 |
+
This is an experimental model that should fix your typos and punctuation.
|
14 |
+
If you like to run your own experiments or train for a different language, have a look at [the code](https://github.com/oliverguhr/spelling).
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Model description
|
18 |
|
|
|
20 |
|
21 |
## Intended uses & limitations
|
22 |
|
23 |
+
This is a work in progress, be aware that the model can produce artefacts.
|
24 |
+
You can test the model using the pipeline-interface:
|
25 |
|
26 |
```python
|
27 |
from transformers import pipeline
|
|
|
31 |
print(fix_spelling("das idst ein neuZr test",max_length=2048))
|
32 |
```
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|